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ABSTRACT

This dissertation considers general time-varying optimization problems that arise in many network con-

trol and machine learning applications. The problem takes the form of minimizing the sum of separable

convex/non-convex cost functions subject to equality constraints, and both the objective and constraints

are parameterized by some time-varying parameters. To cope with the problem dynamics, we design dy-

namic/stochastic algorithms based on primal-dual type methods, e.g. alternating direction method of multi-

pliers (ADMM) and primal-dual decomposition (PDD). Depending on specific application, our algorithms

can accomplish two major tasks: i) continuously track optimal solutions for each time instance; ii) learn the

general pattern of given data and produce one solution that fits all time-varying parameters.

The first part of the dissertation focuses on problems with changing optimal solutions. Specifically,

our considered problem is changing in real time and no iterative algorithm can solve to convergence for

the smallest time interval. We aim at designing algorithms that can run limited iterations for each time

instance and still stay close to optimal solutions. To this end, we design a primal-dual type method based

on ADMM, where we leverage proximal gradient in the primal steps, and modify the dual steps by adding

some perturbation to accommodate the time-varying nature of the problem. We show that, under mild

assumptions, the proposed algorithm is able to track the change of problem, meaning it will always stay in

a neighborhood around the optimal or approximate optimal solutions for each time instance. Moreover, our

analysis indicates an interesting trade-off between solution accuracy and convergence speed. In cases where

gradient information is not available or difficult to compute, we develop a suitable time-varying algorithm

by using only function value information (also known as the zeroth-order information). Through a two-

point estimation of gradient, we observe similar performance as gradient based methods and convergence

in expectation is proved under suitable assumptions. As an extension of this time-varying framework, static

optimization with randomness in updates are discussed with applications in power systems. Specifically,
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an ADMM-based distributed optimal power flow (OPF) controller for renewable energy source (RES) is

designed to steer RES output powers to approximate AC OPF solutions.

The second part of the dissertation, we further discover that the time-varying framework is also appli-

cable to cases where all changing parameters can fit one solution, i.e. training. This type of problem is the

core of many machine learning models that aiming at extracting data pattern. We specifically focus on deep

neural network (DNN) and model the training of DNN into an equality constrained optimization problem

by introducing auxiliary variables for each hidden layer. The resulting formulation is highly nonconvex

and time-varying in that each time only part of the data is available and as time goes by data comes in se-

quentially. We design another primal-dual type method called double stochastic primal-dual decomposition

(DSPD) for the neural network training problem. We demonstrate that the developed algorithm is effective

by: 1) performing theoretical analysis to show that the stochastic DSPD algorithm can reach stationary solu-

tion of the training problem; 2) conducting comprehensive comparison with state-of-the-art algorithms and

show that the proposed algorithm achieves some early stage advantage, that is, the training error decreases

faster in the first a few iterations.
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CHAPTER 1. GENERAL INTRODUCTION

In this dissertation we address dynamic/time-varying (distributed) optimization problems where both

objective and constraints are time-varying [2] [3]. This is closely related to many engineering problems in

power systems, signal processing and machine learning just to name a few. To proceed, we separate our

discussion into 2 parts: solution tracking and model training. For the tracking task, we focus on keeping

close to optimal solutions of a time-varying problem, while the training task aims at finding one solution

that fits all time-varying parameters.

For the tracking task, there have been many works discussing how to model and control the system

output so to continuously optimize overall or individual performance with respect to each network node,

whilst meeting system and node constraints that evolve in real time [4–7]. To model the time-varying

objective we consider the following general formulation:

min
x∈Rm,y∈Rn

f(x; t) + g(y; t) (P1)

s.t. A(t)x + B(t)y = b(t) (1.1a)

x ∈ X (t),y ∈ Y(t), (1.1b)

where t ∈ R+ is the time index; f(·, t), g(·, t) are convex functions uniformly for all t. Depending on dif-

ferent applications, these functions are used to model costs such as system operation costs, or the (negative)

business profits. For example, in power systems they are used to model the power losses and/or devia-

tions from the nominal voltage profile and cost of/reward for ancillary service provisioning, respectively;

A(t) ∈ R`×m,B(t) ∈ R`×n are time-varying matrices, X (t),Y(t) are constraint sets that are convex uni-

formly in time and are easy to apply projection, e.g. bound or ball constraints. For specific problems with

inequality constraints, one can always add slack variables to convert them to equality constraints and thus fit

in the formulation of (1.1a). Problem (P1) represents a general time-varying optimization problem, meaning

the optimal solutions are changing over time. Solving such problem requires algorithms to have the ability

to track the optimal trajectory in real-time. Note that here we only present 1.1 in the form of two blocks



www.manaraa.com

2

x,y because it will have convergence guarantee as stated in later chapters. For problems with more than 2

blocks, there may not be a convergence guarantee, however, there is empirical evidence that they can still be

solved to convergence for each time instance.

Previous efforts [8, 9] have treated dynamic problems as a series of static ones and assuming separate

time scales so that convergence is reached for each discrete time. However, this is not realistic in practice

especially when system parameters change in a fast pace that the algorithm will keep updating according to

past information; [5,6,10] successfully approach dynamic problem in continuous time, but only for isolated

systems where time-varying exogenous inputs that dispersed in the network are not considered.

In recent years, many works have focused on real-time implementation: [5] presents a control algorithm

for real-time multi-agent systems with the ability to track optimal trajectory, however, only cost function

is time-varying; [11] proposes an online algorithm for optimal power flow problem based on quasi-Newton

method. It can be shown that proposed algorithm is able to provide suboptimal solution at a fast timescale.

The tracking ability hinges on the accurate estimation of second order information; For the same application,

[12] leverages dual subgradient method and system feedbacks to design a tracking algorithm called double

smoothing. Regularization term is added in both primal and dual subproblems to prove Q-linear convergence

to a neighborhood of optimal solution for each time instance; [3] [13] further extend double smoothing

algorithm to more general settings and provide a thorough regret analysis.

Chapter 2: In light of the aforementioned works, this chapter proposes a general framework based

on alternating direction method of multipliers (ADMM) [14] to solve time-varying problems aroused from

network control applications. We modify ADMM by introducing perturbation to dual variables. This step

gives us the privilege to exchange solution accuracy for convergence speed, which essentially helps guaran-

tee tracking ability of our algorithm. We compare ADMM with state of the art method, i.e. dual subgradient

method, and conclude that we are able to deal with a wider range of problems and improve stability, espe-

cially for problems with ill-conditioned dual functions [15] [16]. Tracking ability is proved in the sense that

iterates generated from our algorithm is able to converge to a neighborhood of optimal solution in real time.

Chapter 3: In this chapter, we seek to build a zeroth-order dynamic distributed algorithm for time-

varying optimization problems. Specifically, we consider cases where gradient of objective is computation-
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ally expensive or the explicit objective formulation is unknown, and we only have access to function values

of the objective, i.e. zeroth-order information. This setup usually comes from network control applications

where each user node wants to preserve privacy. For each time instance, we query the function values from

a zeroth-order oracle and construct gradient estimations to feed to our algorithm. By doing this, we avoid

expensive gradient evaluation and decrease computation complexity. The resulting algorithm is expected to

perform faster (when gradient evaluation is expensive) and have comparable tracking ability as first-order

methods (in which exact gradient information is required). We provide our design of algorithms and some

numerical results on the same power system model.

Chapter 4: As a direct extension of this time-varying framework, static case optimization with random-

ness in updates is also studied. Specifically, an application in designing a distributed optimal power flow

controller is presented, where we leverage the ADMM based time-varying optimization framework to steer

the renewable energy source output powers to solutions of AC optimal power flow (OPF) problems. Con-

vergence of the RES-inverter output powers to solutions of the approximate AC OPF problem is established

under suitable conditions on the mismatches between the commanded setpoints and actual RES output pow-

ers. Overall, since the proposed scheme can be cast as an ADMM with inexact primal and dual updates, the

convergence results can be applied to more general distributed optimization settings.

For the training task, we specifically focus on training of deep neural network. For the last two

decades, the state-of-the-art training approach for DNNs has been the stochastic gradient descent (SGD)

based methods [17], which are built based on using the chain rule to compute the gradient of the loss function

w.r.t the weight parameters (i.e. backpropagation) [18]. The SGD is easy to implement and suitable for GPU

computing. Extensive research has been done to improve training speed of SGD. The authors of [19, 20]

introduce Polyak momentum and Nesterov momentum respectively that takes average of a few last iterates

to accelerate convergence. In AdaGrad [21], AdaDelta [22], RMSProp [23] and Adam [24] the main focus

is on using different adaptive learning rates, and those methods have been shown to achieve much improves

performances in practice.

Despite all these efforts, the SGD-based algorithms still suffer from many numerical difficulties, among

which the most challenging one is the vanishing gradient [25]. This difficulty comes from the fact that
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gradients for variables belonging to shallower layers are dependent on those for deeper layers (through

nonlinear function composition), which makes the gradients decrease exponentially with the increased layers

of the network, and eventually results in slow convergence. Numerous works have tried to address this issue.

In [26] the authors found that non-saturating activation functions such as rectified linear units (ReLU) can

help alleviate vanishing gradient problem. In [27–29] a normalized initialization is considered, while [30]

considers intermediate normalization layers, enabling SGD to start converging for very deep networks. The

work [31] proposes a new network called residual net that has “shortcut” connections among layers. The

structure has a shorter path from input to output and consequently achieves significantly increased performs

in practice.

Recently, a new training framework is developed in effort to avoid the process of error backpropagation

[32]. The authors propose the idea of splitting neural network layers by introducing auxiliary variables. The

training task is then formulated as an equality constrained optimization problem. Numerous works have

leveraged this splitting idea, e.g. [33] proposes to use ADMM algorithm to solve the equality constrained

problem and suggests that vanishing gradient problem may possibly be alleviated by this framework; [34,35]

utilize block coordinate descent (BCD) algorithm to tackle the problem. Convergence is proved under

suitable assumption on the objective function. Although all these works have shown superiority over SGD-

based method, the comparison may not be fair because all aforementioned splitting layer works are batch

algorithms. In practice, batch algorithm is not realistic due to data size and computation limit. To the best

of our knowledge, there is no stochastic version primal-dual algorithm or stochastic BCD algorithm for

training neural network. The corresponding convergence property also remains unknown.

Chapter 5: In this chapter, we further extend our time-varying framework to the application of deep

learning. Training a neural network is to formulate an optimization problem and each time pass in part

of the data to partially solve the problem. Therefore, this problem is essentially a different type of time-

varying optimization with the goal of learning one set of solution instead of tracking multiple solutions.

In this work, we also leverage the splitting layer idea and propose a novel training framework that only

requires part of the data to be available at each time instance. The resulting algorithm can fully extract

gradient information for variables of deeper layers at early stage of training without needing to go through
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the function composition across layers. A double stochastic primal-dual (DSPD) method is developed, in

which the equality constraints are first relaxed, and then gradually tightened by having increased penalization

as the algorithm proceeds. The DSPD enjoys rigorous convergence guarantees. Its inner loop is a (variance

reduced) double stochastic block coordinate descent method, which converges with a sublinear rate; its

outer loop executes certain dual ascent scheme, which ensures that DSPD converges to first-order stationary

solution (almost surely). Numerical experiments on MNIST dataset demonstrate the effectiveness of the

proposed framework.
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CHAPTER 2. TIME-VARYING OPTIMIZATION WITH APPLICATIONS IN POWER

SYSTEMS

2.1 Introduction

This chapter proposes the development of an online algorithm for time-varying convex problems based

on alternating direction method of multipliers (ADMM) [14]. Using a quadratic regularization term, ADMM

can allow one to deal with nonsmooth terms, and it exhibits improved convergence properties relative to

dual (sub)gradient methods, especially for problems with ill-conditioned dual functions [15] [16]. The paper

presents a new algorithm that has following characteristics: i) at each step the primal subproblems are solved

via proximal gradient descent – providing favorable scalability to large-scale problems and accommodating

non-smooth objectives; ii) a dual perturbation method is utilized, where the dual variables are suitably per-

turbed at every iteration to gain in convergence rate. Related works along this line include the following: [36]

leverages ADMM to solve a real-time multi-agent problem. But it differs from the present work because it

considers only consensus constraints (a special case of our general formulation); [37] considers a dynamic

sharing problem, and convergence to a neighborhood is provided under standard assumptions; however,

the constraint is also a special case of our formulation. Our previous work [38] applies ADMM to track

a solution of a domain-specific optimal power flow problem; however, this work significantly extends [38]

in the following ways: 1) we extend the work to a more general time-varying optimization problem (with

applications not only in power systems); 2) a perturbed ADMM is proposed, and convergence is proved un-

der milder conditions, which enables a wider range of constraints and objectives; 3) the resulting algorithm

is able to incorporate feedback in multiple places to enable distributed implementation. Overall our work

has the following contributions: i) An ADMM-based dynamic algorithm is proposed to solve a family of

time-varying problems. ii) Tracking ability is rigorously proved under mild assumptions; nonsmooth terms

are allowed in the objective and no full row-rank assumption is made for the constraints.
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The remainder of paper is organized as follows. Section 2 will give the general time-varying problem

formulation. Section 3 will introduce our dynamic algorithm. Section 4 will apply proposed algorithm to

two applications, one is in power systems, the other one is route selection. Tracking ability is shown in 5

and 6 in the form of convergence analysis and simulation, respectively.

2.2 Problem Formulation

2.2.1 Problem Setup

Consider the time-varying problem (P1). Assume that the temporal domain is discretized as tk = kτ ,

k ∈ N and τ > 0 is a given sampling time that is small enough to capture the dynamics. At time k, if

the associated problem problem (P1) is solved to global optimality, then we say that a perfect tracking is

achieved. However, in many applications (such as those to be specified shortly) such perfect tracking may

not be possible because before the problem at time k1 is solved, it may have already evolved to a new prob-

lem. Specifically, iterative algorithms often involve multiple iterations of computing and communication,

and by the time algorithms converge for time k, problem parameters such as A(k),B(k),b(k) might have

already changed. Therefore it is desirable to design algorithms with certain “tracking ability”, which means

that the iterates can be continuously steered to stay close to the time-varying optimal solutions.

To derive algorithms that possess the above notion of “tracking” ability, let us reformulate problem

(3.11) as follows. First, we rewrite the time-varying constraint sets X (k),Y(k) into indicator functions in

the objective; and then we separate objective into non-differential functions f (k)
0 (x), g

(k)
0 (y) and differential

1Throughout this paper, boldface characters denote vectors or matrices; characters with superscript (k) denote time-varying
iterates and parameters; for a given vector x and matrix G, ‖x‖2G := xTGx; < x,y > denotes the inner product between the
vectors x and y.
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functions f (k)
1 (x), g

(k)
1 (y). At time k we consider the following time-varying problem:

min
x∈Rm,y∈Rn

f (k)(x) + g(k)(y) (P2)

s.t. A(k)x + B(k)y = b(k) (2.1a)

f (k)(x):=f
(k)
0 (x) + f

(k)
1 (x), g(k)(y):=g

(k)
0 (y) + g

(k)
1 (y),

A(k) := A(tk),B
(k) := B(tk),b

(k) := b(tk),

X (k) := X (tk),Y(k) := Y(tk).

Throughout the entire paper, our discussion on (P2) and proposed algorithm are based on the following

assumption:

Assumption 1. For each time k, (P2) is feasible.

If Assumption 1 does to hold at a time k, the problem formulation would not be well posed since there

is no solution trajectory to track. We further characterize the drift of the optimal solution as follows.

Assumption 2. The successive difference between optimal solutions are bounded:

‖x∗,(k+1)−x∗,(k)‖ ≤ σx, ‖y∗,(k+1) − y∗,(k)‖ ≤ σy, (2.2)

where x∗,(k),y∗,(k) are optimal solutions of (P2) at time k; σx > 0, σy > 0 are some constants. Also the

problem parameters are bounded as:

‖A(k+1) −A(k)‖ ≤ σA, ‖B(k+1) −B(k)‖ ≤ σB (2.3)

‖A(k)‖ ≤ σ̃A, ‖B(k)‖ ≤ σ̃B, ‖b(k+1) − b(k)‖ ≤ σb (2.4)

where σA, σB, σ̃A, σ̃B, σb are some given positive constants.

Assumption 2 is common in time-varying optimization [2, 3, 6, 11]; worst-case bounds for (2.2) can be

obtained assuming that the sets X (k),Y(k) are compact uniformly in time. Another approach is to measure

the distance based on the optimal drift, without assuming a specific bound; see, e.g., [36,37]. The parameters

σx and σy quantify maximum variation of the optimal solutions over two consecutive time steps, and they are
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always finite (because the problem is assumed to be always feasible); since the paper deals with a tracking

problem, conventional wisdom would suggest that better tracking performance can be achieved when (P2)

is not changing rapidly; this will be confirmed in the convergence results presented later in the paper.

Assumption 3. For each time k, f (k), g(k) satisfy

〈∂f (k)(x1)−∂f (k)(x2),x1−x2〉≥ ṽf‖x1−x2‖,∀x1,x2 (2.5)

〈∂g(k)(y1)−∂g(k)(y2),y1−y2〉 ≥ ṽg‖y1−y2‖,∀y1,y2 (2.6)

where ṽf , ṽg are uniform lower bounds of strongly convex constants for f (k), g(k). Functions f (k)
1 , g

(k)
1 have

Lipschitz continuous gradients,

‖∇f (k)
1 (x1)−∇f (k)

1 (x2)‖ ≤ L̃f‖x1−x2‖, ∀x1,x2 (2.7)

‖∇g(k)
1 (y1)−∇g(k)

1 (y2)‖ ≤ L̃g‖y1−y2‖, ∀y1,y2 (2.8)

where L̃f , L̃g are uniform upper bounds of Lipschitz constants for∇f (k)
1 ,∇g(k)

1 .

Assumption 4. For each time k, objective functions f (k)(x), g(k)(y) are coercive, i.e.

f (k)(x)→∞ as ‖x‖ → ∞, g(k)(y)→∞ as ‖y‖ → ∞

Assumption 4 will be instrumental to ensure that the iterates are bounded; that is, continuous coercive

functions’ level sets {x|f(x) ≤ µ1,∀µ1}, {y|g(y) ≤ µ2,∀µ2} are always compact, thus we have optimal

solutions are bounded, i.e.

‖x∗,(k)‖ ≤ σ1, ‖y∗,(k)‖ ≤ σ2

for some positive constants σ1, σ2.

Remark. Problem (2.1) is time-varying (or dynamic) because its cost function and constraints evolve over

time. In this context, we consider the problem of tracking an optimal solution trajectory. Relative to other

existing online optimization or leaning settings, our time-varying scenario involves a changing objective and

constraints, not just increasing data or processing measurements in a sequential fashion; furthermore, our

scenario does not rely on feedback, so there is no exploration-exploitation tradeoff.
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2.3 ADMM for Time-Varying Optimization

This section presents an ADMM-based algorithm to track an optimal solution trajectory of the time-

varying problem (P2). As summarized in Table I, the proposed algorithm exhibits linear convergence guar-

antees under less stringent conditions relative to existing ADMM-based methods (even for static problems).

In fact, although classic ADMM is conceptually simple and easy to implement, the conditions under which

it is convergent is shown to be quite restrictive [15]. We propose a new algorithm by leveraging the idea of

dual perturbation [39,40] and gradient steps; this will provide a way to demonstrate convergence for a larger

family of problems. However, a linear convergence rate at milder conditions comes at the cost of ensuring

tracking of an approximate Karush-Kuhn-Tucker (KKT) point [3, 39, 40].

Accordingly, we propose to add a small perturbation to the dual variable λ in the form of 1−βγ, where

γ > 0 is the perturbation parameter and βγ ∈ (0, 1). The perturbed augmented Lagrangian function is then

defined as

L(k)(x,y;λ) = L(k)
1 (x,y;λ) + f

(k)
0 (x) + g

(k)
0 (y) (2.9)

L(k)
1 (x,y;λ)=f

(k)
1 (x)+g

(k)
1 (y) +

β

2
‖A(k)x+B(k)y−b(k)‖2

− (1− βγ)λT(A(k)x + B(k)y−b(k)).

Following standard gradient-based ADMM algorithm [41], to update x and y, one performs the following

optimization

y(k+1)=arg min
y

〈
∂L(k+1)

1 (x(k),y(k);λ(k))

∂y(k)
,y − y(k)

〉
+ g

(k+1)
0 (y) +

1

2α2
‖y − y(k)‖2,

x(k+1)=arg min
x

〈
∂L(k+1)

1 (x(k),y(k+1);λ(k))

∂x(k)
,x− x(k)

〉
+ f

(k+1)
0 (x) +

1

2α1
‖x− x(k)‖2,
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where α1, α2 are step sizes. Now we are ready to give a perturbed version of gradient-based ADMM2:

y(k+1)= prox
g
(k+1)
0

(
y(k)−α2

∂L(k+1)
1 (x(k),y(k);λ(k))

∂y(k)

)
, (2.10a)

x(k+1)= prox
f
(k+1)
0

(
x(k)−α1

∂L(k+1)
1 (x(k),y(k+1);λ(k))

∂x(k)

)
, (2.10b)

λ(k+1)=(1−βγ)λ(k)−β
(
A(k+1)x(k+1)+B(k+1)y(k+1)−b(k+1)

)
. (2.10c)

Compared to classical ADMM-based algorithms, the differences here are in the proximal gradient steps

in the primal update and the (small) perturbation added to λ. The proximal gradient steps may provide

favorable computational gains when applied to a large-scale problem; it also facilitate ones to develop

measurement-based algorithms as in, e.g., [3].

We remark that adding small perturbation in dual variable is a very useful technique to ensure conver-

gence. To give some intuition of why we design our algorithm this way, let us consider a toy example as

follows:

min
x

0, s.t. Ax = 0 (2.11)

where A is some fixed matrix, not necessarily positive semidefinite. The optimality condition for the above

problem can be written down as the following saddle point problem

min
x

max
λ

xTAλ. (2.12)

One can apply the alternating gradient descent/ascent method for solving problem (2.12), whose steps are

similar as (2.10) and are given below

xk+1 = xk − α(Aλk), λk+1 = λk + β(ATxk).

An interesting observation (see Figure 2.2 where we plot xTAλ using a random matrix A) is that the

algorithm will diverge if no perturbation is added to y as shown in Figure 2.1a; also see [42] for a formal

proof. However, once a small perturbation is added to y in both primal and dual updates, i.e.

xk+1 = xk − α(Aλk(1− γβ)), λk+1 = λk(1− γβ) + β(ATxk),

where γ > 0 is a small number, the algorithm will converge as shown in Figure 2.1b. This example serves

as an motivation to use the perturbation technique.
2proximal operator is defined as proxh(x) = argminz ‖z− x‖2 + h(z).
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Table 2.1: Trade-off between optimality and conditions for linear convergence.

Strong Con-
vexity

Lipschitz
Continuity

Full Row
Rank

Optimality

Classic
ADMM

f (k) ∇f (k) A(k), (B(k))T

Optimal
solution

f (k), g(k) ∇f (k) A(k)

f (k) ∇f (k),∇g(k) (B(k))T

f (k), g(k) ∇f (k),∇g(k) 7

Proposed
Algorithm

f (k), g(k) 7 7 Perturbed
solution
[cf. (2.13)]
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(a) Performance without perturbation
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(b) Performance with perturbation.

Figure 2.2: Example of trends of the objective value of (2.12) for methods with and without perturbation.

2.4 Convergence Analysis

In this section we provide analytical results for convergence and tracking ability of the proposed algo-

rithm. The overall analysis is grounded on the fact that the algorithm would exhibit linear convergence in

a static setting; once linear convergence is guaranteed for a static problem, we can prove that our proposed

algorithm is able to provide the desired tracking ability.

From [15], it is known that existing ADMM has relatively strict conditions for linear convergence and

these conditions may not hold true in some applications (it will not hold for one application presented

in Section 4.4); for example, the coefficient matrices in constraints (2.1a) might not have full row rank.

Further, in some applications, the objective function of (2.1) may also contain non-smooth terms, which

can jeopardize the Lipschitz continuity property. In contrast, the proposed algorithm could be utilized in a
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wider range of time-varying optimization problems. It is also worth pointing out that [15] deals with static

optimization problems; here, the focus is on time-varying settings. Next, we analyze the convergence of the

algorithm. To proceed, we concatenate primal and dual optimizer as {u∗} = {x∗; y∗;λ∗} (for static case)

as the optimizer of max
λ

min
x,y
L(k) at time k. For notation simplicity we neglect superscript k for static case

and we have:

ATλ∗ −∇f1(x∗) ∈ ∂f0(x∗) (2.13a)

BTλ∗ −∇g1(y∗) ∈ ∂g0(y∗) (2.13b)

Ax∗ + By∗ − b + γλ∗ = 0 (2.13c)

Condition (2.13) is a perturbed version of KKT conditions, related to approximate KKT (AKKT) [43, 44].

Basically, optimizer u∗ is not necessarily the KKT point of original problem (P2), but rather an approximate

solution within a range of the KKT point of (P2). The detailed proof of why u∗ is an AKKT point of (P2)

is beyond the scope of this paper. We refer readers to [44, section 3] for detailed discussion on connections

between AKKT and KKT conditions as well as AKKT proofs.

As an intermediate step, we consider the case where our algorithm is applied to a static problem; the

result for the static case will then be utilized in the proof of our main result.

Lemma 1. For a fixed given time, let {uk} = {xk; yk;λk} be the sequence generated by our algorithm.

Further, let u∗ be an approximate KKT point of (P2), we have the following inequality:

‖uk − u∗‖2G ≥ (1 + δ)‖uk+1 − u∗‖2G, (2.14)

where G =


1
α1

I 0 0

0 1
α2

I 0

0 0 1
β I

 is positive definite and:

δ = min

 ṽf

(1 + βγ)σ̃2
A +

L̃2
f

ṽf

,
ṽ2
g

4β2σ̃4
B + 2L̃2

g

, βγ

 .

Dual step size β and perturbation constant γ satisfy: βγ + β ≤ 1, β ≤ 1. Finally, we can choose step sizes

as follows:
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α1 =
1

(1 + βγ)σ̃2
A +

L̃2
f

ṽf

, α2 =
1

2β2 max σ̃4
B

ṽg
+

L̃2
g

ṽg

Remark. We can further specify β = 0.5 and γ = 1 (other choices would also be fine as long as they

satisfy conditions in Lemma 1) so that α1, α2, δ depend only on the problem itself; i.e,

δ = min

 ṽf

3
2 σ̃

2
A +

L̃2
f

ṽf

,
ṽ2
g

σ̃4
B + 2L̃2

g

,
1

2

 , (2.15)

α1 =
1

3
2 σ̃

2
A +

L̃2
f

ṽf

, α2 =
1

max σ̃4
B

2ṽg
+

L̃2
g

ṽg

. (2.16)

Notice that as long as one picks δ as in (2.15), there exist suitable α1, α2 to ensure convergence (see (2.41)–

(2.42) in the proof). Inequality (2.14) indicates that the iterates generated by the algorithm are contracting

updates. In fact, it can be regarded as linear convergence of uk for each fixed time instance (i.e. static case).

The proof is relegated to appendix. Now that we are guaranteed (2.14) is true, we can now proceed to state

the tracking ability of our proposed algorithm.

Theorem 1. At each time instance k, suppose that all assumptions hold; we concatenate primal and

dual variables as {w(k)} = {x(k); y(k);λ(k)} as iterates generated by our algorithm and {w∗,(k)} =

{x∗,(k),y∗,(k),λ∗,(k)} be an optimizer of max
λ

min
x,y
L(k). It holds that:

lim
k→∞

sup ‖w(k) −w∗,(k)‖G ≤
ψ(σ)

δ
, (2.17)

where ψ(σ) =
√

σ2
x
α1

+
σ2
y

α2
+ 2σ2

λ
and

σλ = σ̃Aσx + σ̃Bσy + σb + σAσ1 + σBσ2.

Proof of Theorem 1. According to linear convergence result for a fixed time we have

‖w(k) −w∗,(k)‖G ≤
1

1 + δ
‖w(k−1) −w∗,(k)‖G,
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For notation simplicity we define r = 1
1+δ ∈ (0, 1). Based on this and triangle inequality we have

‖w(k)−w∗,(k)‖G ≤ r‖w(k−1)−w∗,(k−1)+w∗,(k−1)−w∗,(k)‖G

≤ r‖w(k−1)−w∗,(k−1)‖G+r‖w∗,(k−1)−w∗,(k)‖G

≤ r
(
r‖w(k−2)−w∗,(k−2)‖G + r‖w∗,(k−2) −w∗,(k−1)‖G

)
+ r‖w∗,(k−1) −w∗,(k)‖G . . .

≤ rk‖w(0) −w∗,(0)‖G +

k∑
i=1

rk−i+1‖w∗,(i−1) −w∗,(i)‖G.

Notice that we only have bounded primal drift, so we need to use other terms to bound dual drift. From

(2.2), (2.13c) and the fact that we have chosen γ = 1, we know that

A(k+1)x∗,(k+1)−A(k)x∗,(k)+B(k+1)y∗,(k+1)−B(k)y∗,(k)

+b(k) − b(k+1) + λ∗,(k+1) − λ∗,(k) = 0

⇒‖λ∗,(k+1)−λ∗,(k)‖

≤‖A(k+1)(x∗,(k+1)−x∗,(k)) + (A(k+1) −A(k))x∗,(k)‖

+‖B(k+1)(y∗,(k+1)−y∗,(k)) + (B(k+1) −B(k))y∗,(k)‖

+‖b(k) − b(k+1)‖

≤‖A(k+1)‖‖x∗,(k+1)−x∗,(k)‖+‖B(k+1)‖‖y∗,(k+1)−y∗,(k)‖

+‖b(k) − b(k+1)‖+‖A(k+1) −A(k)‖‖x∗,(k)‖

+‖B(k+1) −B(k)‖‖y∗,(k)‖

≤σ̃Aσx + σ̃Bσy + σb + σAσ1 + σBσ2 , σλ.

Now we can make the following conclusion:

‖w∗,(k−1) −w∗,(k)‖G ≤

√
σ2

x

α1
+
σ2

y

α2
+ 2σ2

λ
, ψ(σ).
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Taking k → +∞, we can derive

lim
k→∞

‖w(k) −w∗,(k)‖G

≤ lim
k→∞

(
r(1− rk)

1− r
ψ(σ) + rk‖w(0) −w∗,(0)‖G

)
⇒ lim sup

k→∞
‖w(k) −w∗,(k)‖G ≤

r

1− r
ψ(σ) =

ψ(σ)

δ
.

The desired result is obtained. �

Remark. The final bound in Theorem 1 may not necessarily be tight. However, it illustrates how constant

δ, successive differences between parameters and optimal solutions can affect the final tracking bound. This

can serve as a guideline for modelling future applications to ensure tracking ability. The results of Theorem

1 can be further extended to network control applications where system measurements are involved in both

objective function and constraints. The measurements are used to replace terms originally generated from

iterates. It can be shown that as long as the difference between measurements and original terms are within

a bound, we are able to generalize Theorem 1 by manipulating the constant on the right hand side of (2.17).

2.5 Example of Motivating Applications

In this section, we briefly outline two examples of application of the proposed methodology and algo-

rithmic framework. In particular:

(i) Power systems: we consider a distribution network featuring distributed energy resources (DERs), and

we apply the proposed methodology to drive the DER output powers to the solution of an optimization

problem encapsulating voltage constraints and given performance objectives. Differently from e.g. [4, 45],

we demonstrate that the proposed methodology is amenable to settings where the distribution system is

partitioned in areas; each area is autonomously controlled, and it “trades” power with adjacent areas based

on given economic objectives [46].

(ii) Route choice in a road networks: we consider a problem where drivers try to minimize the traveling time,

while possibly avoiding substantial detours from their preferred route. The routing problem is probabilistic,

in the sense that the problem produces probabilities mass functions that the driver utilizes to pick the routes.
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the problem inputs include terms that account for traffic conditions and capacity constraints; see e.g. [47]

and pertinent references there in for a detailed model.

2.5.1 Real Time OPF with Multi-area Consensus Constraints

Similar to [46], consider partitioning a power distribution network into C clusters, and denote as Ci the

set of electrical nodes within cluster i = 1, . . . , C. Two clusters i and j are adjacent if there is at least an

electrical node i such that i ∈ Ci and i ∈ Cj . Let Bi,j := Ci ∩ Cj be the set of boundary nodes connecting

cluster i to cluster j, and define Bi := ∪j 6=iBi,j . Further, let Ii := Ci\Bi be the set of internal nodes

for cluster i. For future developments, let Ni := |Ii| be the number of internal nodes if cluster i, and let

Ni ⊂ {1, . . . , C} be the set of neighboring clusters of the ith one (i.e., cluster connected to the ith one).

Let xij := [P ij , Q
i
j ]

T ∈ R2 collect the net active and reactive powers injected by DERs at the node

j ∈ Ii of cluster i. Particularly, xij can represent the powers injected by one DER located at node j, or

the aggregate net power injections of a group of DERs located at node j (e.g., a household with multiple

controllable devices) and we stack the setpoints {xij}j∈Ii in the vector xi ∈ R2Ni . If no controllable DERs

are present at a given location, the corresponding vector xij is set to 03. On the other hand, `ij ∈ R2 denotes

the net non-controllable loads at node j ∈ Ii, and `i ∈ R2Ni stacks the loads {`ij}j∈Ii . It is assumed that

no DERs and no non-controllable loads are located at the boundary nodes Bi,j .

Let V i
j ∈ C denote the complex line-to-ground voltage phasor at node j of cluster i, and let vi :=

[{|V i
j |, j ∈ Ii}]T be the vector of voltage magnitudes of the internal nodes Ii. For each pair of neighboring

clusters (i, j), let xj→in := [P j→in , Qj→in ]T ∈ R2 represent the active and reactive powers flowing into area i

from area j through node n ∈ Bi,j ; on the other hand, xi→jn ∈ R2 contains the active and reactive powers

flowing into area j from area i through node n ∈ Bi,j . From Kirchhoff’s Law, it holds that xj→in +xi→jn = 0.

To facilitate the syntheses of computationally-affordable algorithms, we leverage the following approximate

linear relationship between net injected power and voltage magnitude (see e.g., [48, 49] and references

therein):
3For notational simplicity, the model is outlined for balanced systems and for the case where one household/building with DERs

is located at a node. However, the model can be trivially extended to multiphase networks [48] and for the case where multiple
households/buildings with DERs are located at a node (at the cost of increasing the complexity of the notation).
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ṽi :=
∑
j∈Ii

Ai
j(x

i
j − `ij) +

∑
j∈Ni

∑
n∈Bi,j

Aj→i
n xj→in +a, (2.18a)

= Ai(xi − `i) +
∑
j∈N i

Aj→ixj→i + a, (2.18b)

where Ai = [Ai
j ]j∈Ii ,A

j→i = [Aj→i
n ]n∈Bi,j ,a are time-varying problem parameters derived from lin-

earized power flow equation. Another linear relationship between net injected power and power between

clusters is captured in the following equation:

xj→i :=
∑
k∈Ii

Mj→i
k (xik − `ik) + mj→i,

+
∑

k∈Ni\{j}

∑
n∈Bi,k

Mk,j→i
n xk→in (2.19a)

= Mj→i(xi−`i) + mj→i +
∑

k∈Ni\{j}

Mk,j→ixj→i, (2.19b)

where Mj→i = [Mj→i
k ]k∈Ii ,M

k,j→i = [Mk,j→i
n ]n∈Bi,k ,j→i are also time-varying problem parameters de-

pending on the actual network physics. All model parameters in (2.18)–(2.19) can be obtained as shown

in [48]. Now we are ready to state our real-time OPF problem as follows:

min
{xi},{xj→in ,xi→jn }

C∑
i=1

[f i(xi) + gi({xj→i})] (P3)

s.t. xij ∈ Y ij ,∀ j ∈ Ii, i = 1, . . . C (2.20a)

vmin1 ≤ ṽi ≤ vmax1,∀ i = 1, . . . C (2.20b)

xj→i = Mj→i(xi − `i) + mj→i +
∑

k∈Ni\{j}

Mk,j→ixj→i

, ∀ j ∈ Ni, i = 1, . . . , C (2.20c)

xj→i + xi→j = 0, ∀ neighboring areas (i, j) (2.20d)

where the time-varying objective function models the amount of real power curtailed and the amount of

reactive power injected or absorbed (which leads to non-smooth term in the objective, e.g. `1 term). For

notation simplicity, we write objective function in (P3) as Ψ(x). Consider Mj→i consists of 1, 0, with 1 for

real power, 0 for reactive power. Putting (2.19b) back to (2.18b), adding slack variables γi,βi to (2.20b)

formulate equality constraints, and adding strongly convex term w.r.t γ = {γi},β = {βi} we have the
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following formulation:

min
{{xi},{xj→in ,xi→jn }},{γi,βi≥0}}

Ψ(x) + a‖γ‖2 + b‖β‖2 (P4)

s.t. xij ∈ Y ij ,∀ j ∈ Ii, i = 1, . . . C (2.21a)

vmin1− ṽi + γi = 0,∀ i = 1, . . . C (2.21b)

ṽi + βi − vmax1 = 0, ∀ i = 1, . . . C (2.21c)

xj→i = Mj→i(xi − `i) + mj→i +
∑

k∈Ni\{j}

Mk,j→ixj→i

, ∀ j ∈ Ni, i = 1, . . . , C (2.21d)

xj→i + xi→j = 0, ∀ neighboring areas (i, j). (2.21e)

We can now clearly see a mapping from (P4) to (P2): objective functions are Ψ(x) and a‖γ‖2+b‖β‖2(where

a, b > 0 are small); two blocks of variables are {xi,xj→i} and {γi,βi}; constraints are all linear and

separable w.r.t each network node. Problem (P4) is time-varying in both objective function and constraint

parameters. In order to better illustrate how the proposed algorithm can be applied, we use a 4-cluster

network (see Figure 2.3) as an example. First, we substitute xj→i in (2.18b) with (2.21d); then, we substitute

ṽi in (2.21b)(2.21c) with (2.18b); last, we define the corresponding augmented Lagrangian function as

follows:

L(x,γ,β,λ) = Ψ(x) + a‖γ‖2 + b‖β‖2

+
∑
k

∑
i∈Ck

ρ

2
‖
∑
j∈Ck

(Ai
j + A3

j )x
i
j+ak+β

i−vmax+
λ1(1− γ)

ρ
‖2

+
∑
k

∑
i∈Ck

ρ

2
‖vmin−

∑
j∈Ck

(Ai
j+A3

j )x
i
j−ak+γ

i+
λ2(1− γ)

ρ
‖2

+
∑
k

ρ

2
‖
∑
i

xi→j −
∑
j∈Ck

xj +
λ4(1− γ)

ρ
‖2

+
ρ

2
‖
∑
i 6=j

xi→j +
λ3(1− γ)

ρ
‖2

The detailed updates follow the same way as (2.10) and from Table I we know that linear convergence

to AKKT is guaranteed. To further improve our algorithm for this particular application. We incorporate

system measurements in both primal and dual updates in the following way:
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∑
j∈Ck

(Ai
j + A3

j )x
i
j + ak → φ(x),

∑
j∈Ck

xj → ψ(x), (2.22)

where φ(x), ψ(x) are measurements. This is beneficial in that: i) A natural distributed computing scheme

is achieved while without feedback it is not clear whether the algorithm can be implemented in a distributed

way; ii) feedback terms are much less than uncontrollable terms, which essentially shrinks the measuring

time; iii) it is easier to satisfy power flow equations with the help of system measurements.

2.5.2 Route Choice in Road Network

This application is about each driver minimizes his/her own traveling time and at the same time not

deviate from his/her preferred route. Consider a strongly-connected directed graph (V, E), where V =

{1, . . . , V } represents locations, E = {1, . . . , E} represents roads. Each driver i ∈ {1, . . . , N} has an

origin Oi and a destination Di, between which the driver has his/her strategy of which road to transit. We

define the strategy as a vector of probabilities si = [s1
i ; . . . ; s

E
i ], sji ∈ [0, 1] for each driver i. In order for all

driver to be able to reach destination from origin, the following condition has to hold:

∑
j∈→v

sji −
∑
j∈←v

sji =



−1, if v = Oi

1, if v = Di

0, otherwise,

(2.23)

where→ v and← v represents edges flow into v and out of v, respectively. We define the incidence matrix

M ∈ RV×E , where component Mi,j = 1 if road j points to i, Mi,j = −1 if road j points out of i, Mi,j = 0

otherwise. In this way, we can construct a constraint for driver i as Msi =i,i ∈ RV . The elements of i is

defined as j
i = −1 when j = Oi,

j
i = 1 when j = Di,

j
i = 0 otherwise. Also we need to acknowledge

the fact that there should be a certain limit for number of cars in one road. We model this fact using the

following constraint:

1

N

N∑
i=1

sji ≤ L
j , ∀j = 1, . . . , E (2.24)

where Lj denotes the limit for road j. Recall that we want to minimize driver’s traveling time and stick to

driver’s preferred route. To this end, we introduce the following objective:
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C(si) =
r

2
‖si − ŝi‖2 +

E∑
j=1

T j(
1

N

N∑
i=1

sji )s
j
i , (2.25)

where T j( 1
N

∑N
i=1 sji ) models the traveling time for road j, which is a smoothed version of piecewise linear

function and is continuously differentiable; ŝi denotes the preferred strategy of driver i. Now adding suitable

slack variables zj to (2.24) and adding a small strongly convex term in the objective we can formulate the

following problem:

min
si,z:={zj}≥0

r

2
‖si − ŝi‖2 +

E∑
j=1

T j(
1

N

N∑
i=1

sji )s
j
i + c‖z‖2 (P5)

s.t.
1

N

N∑
i=1

sji + zj = Lj , j = 1, . . . , E (2.26a)

Msi =i, i = 1, . . . , N (2.26b)

(P5) is a time-varying problem in that each roads’ conditions are changing over time, i.e. Lj is a time-

varying term, which in turn makes the traveling time function T j also time-varying; it is also possible that a

driver will change his/her location during the trip, so i is another time-varying term. We can clearly see that

(P5) is a special case of our general model (P2) in the following sense: i) Objective functions are strongly

convex w.r.t si, z; ii) Constraints (2.26a) and (2.26b) are all linear constraints that can be grouped as the

form Ax + By = b. Therefore, our algorithm can be applied to (P5) with guaranteed linear convergence

for each time instance.

2.6 Simulation

In this section, we test our algorithm using the same power systems settings. We consider a simi-

lar system as in [4], where a modified IEEE 37-node test feeder is utilized. The network is obtained by

considering a single phase equivalent, and by replacing the loads on phase “c” specified in the original

dataset with real load data measured from feeders in a neighborhood called Anatolia in California during

a week in August 2012. It is assumed that the aggregations of photovoltaic systems are located at nodes

4, 7, 10, 13, 17, 20, 22, 23, 26, 28, 29, 30, 31, 32, 33, 34, 35, and 36. The rating of these inverters are

300kVA for i = 3, 350kVA for i = 15, 16 and 200kVA for the remaining ones. The objective is set to be
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Figure 2.3: power distribution network with 4 clusters, node 3 is a boundary node that belongs to all 4
clusters.
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Figure 2.4: Real power at feeder head during 12:00-12:30.

f i(xi) = cp(Pav,i − Pi)2 + cq(Qi)
2 + c̄q|Qi|, gi(xj→i) = 0 where Pav,i is the maximum real power avail-

able from the PV system i, and cp = 3, cq = 1, c̄q = 0.1. The voltage limits are set to be V min = 0.95pu,

V max = 1.05pu. The generation profiles are simulated based on real solar irradiance data and have a gran-

ularity of 1 second. First we specify a given trajectory for the power at the common coupling, which

is color-coded in red in Fig. 2.4 (negative power indicates reverse power flows). It can be seen that our

algorithm is able to regulate P k0 close to P k0,set in real time. Figure 2.5 illustrates the voltage profiles for

selected nodes. From 10:00 to 12:00 we observe a few flickers, which is caused by rapid variations of the

solar irradiance. Other than that, it can be seen that voltage regulation is enforced and a flat voltage profile

is obtained. Note that even there are some big jumps from around 12:00 to 14:00, our algorithm is still able
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Figure 2.5: Voltage profile achieved (only some nodes are considered for illustration purposes).
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Figure 2.6: Voltage violation across system
∑
n∈N

(
max(|V k

n | − vmax, 0) + max(vmin − |V k
n |, 0)

)

to track the optimal trajectory. A comparison with double smoothing algorithm [4] is presented in Figure

2.6. The proposed strategy has potentially better voltage regulation ability, especially for extreme cases e.g.

the two spikes from 10:00 to 12:00. We proceed to test in the same setting except we are adding con-

sensus constraints shown in Application 1. In Figure 2.7a we can see that for all 4 clusters, power violation

decreases dramatically in first a few minutes and remains at a low level of 10−10. The power consensus

violation is shown in Figure 2.7b, where a steep drop at the begging and flat low line after that are observed.

2.7 Conclusion

This paper gives a general online optimization problem formulation and proposes a dynamic algorithm

based on alternating direction method of multipliers that can continuously track optimal solution in real
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(b) Consensus violation: ‖x(i→j) + x(j→i)‖2

Figure 2.8: Simulation for multi-area problem

time. The steps of ADMM are proximal gradient steps with modification of adding perturbation to dual

variable and incorporating system feedback for certain applications. The resulting algorithm is proved to

converge to a neighborhood of optimal solution for each time instance. Numerical results for power systems

applications also demonstrate the practicality of the proposed algorithm. Our future research will focus on

general online nonconvex optimization problems.

2.8 Proof of Lemma 1

Proof. From the optimality condition of the subproblems (2.10a),(2.10b), one has that:

ATλk(1− βγ)− βAT (Axk + Byk+1 − b)−∇f1(xk) +
1

α1
I(xk− xk+1) ∈ ∂f0(xk+1)

⇒ATλk+1+βATA(xk+1−xk)+∇f1(xk+1)−∇f1(xk)+
1

α1
I(xk−xk+1) ∈ ∂f0(xk+1)+∇f1(xk+1),

(2.27)

BTλk(1−βγ)−βBT (Axk+1+Byk+1−b)+ βBTA(xk+1 − xk) + βBTB(yk+1 − yk)

+
1

α2
I(yk−yk+1)−∇g1(yk) ∈ ∂g0(yk+1)

⇒BT (λk+1 + βA(xk+1 − xk) + βB(yk+1 − yk)) +∇g1(yk+1)−∇g1(yk) +
1

α2
I(yk − yk+1)

∈ ∂g0(yk+1) +∇g1(yk+1). (2.28)
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Furthermore, from the dual update, one can obtain:

λk+1 = λk − β(Axk+1 + Byk+1 − b + γλk)

⇒ 1

β
(λk − λk+1) = γλk + (Axk+1 + Byk+1 − b), (2.29)

and, together with optimality condition, one obtains:

1

β
(λk−λk+1)=γ(λk−λ∗)+A(xk+1−x∗)+B(yk+1−y∗) (2.30)

Since the functions f = f0 + f1 and g = g0 + g1 are strongly convex, we leverage (2.5) and (2.6) and, by

plugging the optimality condition (2.27) and (2.28), we have

〈AT (λk+1−λ∗) + βATA(xk+1−xk)+∇f1(xk+1)−∇f1(xk)

+
1

α1
I(xk − xk+1),xk+1 − x∗〉 ≥ vf‖xk+1 − x∗‖2 (2.31)

〈BT (λk+1 − λ∗ + βA(xk+1 − xk) + βB(yk+1 − yk))

+∇g1(yk+1)−∇g1(yk) +
1

α2
I(yk − yk+1),yk+1 − y∗〉

≥ vg‖yk+1 − y∗‖2 (2.32)

Next, combine (2.32) and (2.30) to obtain:

〈λk+1−λ∗,A(xk+1−x∗)〉+〈βA(xk+1 − xk),A(xk+1 − x∗)〉

+〈∇f1(xk+1)−∇f1(xk),xk+1−x∗〉+〈 1

α1
(xk−xk+1),xk+1−x∗〉

+〈λk+1−λ∗,B(yk+1−y∗)〉+〈βBTA(xk+1−xk),yk+1−y∗〉

+ 〈∇g1(yk+1)−∇g1(yk),yk+1 − y∗〉

+〈βBTB(yk+1−yk),yk+1−y∗〉+〈 1

α2
(yk−yk+1),yk+1−y∗〉

≥ vf‖xk+1 − x∗‖2 + vg‖yk+1 − y∗‖2 . (2.33)
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Define Φ = vf‖xk+1 − x∗‖2 + vg‖yk+1 − y∗‖2; then, using (2.30) it follows that:

〈λk+1 − λ∗, 1

β
(λk − λk+1))− γ(λk − λ∗)〉+ β〈A(xk+1 − xk),

1

β
(λk − λk+1))− γ(λk − λ∗)〉

+〈∇f1(xk+1)−∇f1(xk),xk+1 − x∗〉+〈 1

α1
(xk−xk+1),xk+1 − x∗〉+〈βBTB(yk+1−yk),yk+1−y∗〉

+〈∇g1(yk+1)−∇g1(yk),yk+1 − y∗〉+ 〈 1

α2
(yk − yk+1),yk+1 − y∗〉 ≥ Φ

⇒〈λk+1 − λ∗, 1

β
(λk − λk+1)〉+ 〈λk+1 − λ∗, γ(λ∗ − λk)〉+ β〈A(xk+1 − xk),

1

β
(λk − λk+1)〉

+β〈A(xk+1 − xk), γ(λ∗ − λk)〉+ 〈∇f1(xk+1)−∇f1(xk),xk+1 − x∗〉

+〈 1

α1
(xk−xk+1),xk+1−x∗〉+〈βBTB(yk+1−yk),yk+1−y∗〉

+〈∇g1(yk+1)−∇g1(yk),yk+1 − y∗〉+ 〈 1

α2
(yk − yk+1),yk+1 − y∗〉 ≥ Φ (2.34)

Define the following quantities:

G =


1
α1

I 0 0

0 1
α2

I 0

0 0 1
β I

 ,uk =


xk

yk

λk

 , u∗ =


x∗

y∗

λ∗


so that one can rewrite the inequality above as follows:

(uk+1 − u∗)TG(uk − uk+1) + γ〈λ∗ − λk,λk+1 − λ∗〉

+〈λk−λk+1,A(xk+1 − xk)〉+ βγ〈λ∗−λk,A(xk+1 − xk)〉

+〈βBTB(yk+1 − yk),yk+1 − y∗〉

+〈xk+1−x∗,∇f1(xk+1)−∇f1(xk)〉

+〈yk+1−y∗,∇g1(yk+1)−∇g1(yk)〉≥ Φ . (2.35)

We then consider the following equality

‖a−c‖2G−‖b−c‖2G=2(a−c)TG(a−b)− ‖a−b‖2G. (2.36)
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and use it in (2.35) to arrive at the following inequality:

(uk+1 − u∗)TG(uk − uk+1) ≥ γ

2
‖λk+1 − λ∗‖2

−γ
2
‖λk−λk+1‖2 +

γ

2
‖λk−λ∗‖2+〈λk+1−λk,A(xk+1−xk)〉

+βγ〈λk−λ∗,A(xk+1−xk)〉+〈x∗−xk+1,∇f1(xk+1)−∇f1(xk)〉

+〈y∗−yk+1,∇g1(yk+1)−∇g1(yk)〉

+〈βBTB(yk+1 − yk),yk+1 − y∗〉+ Φ (2.37)

Then, we utilize the Cauchy-Schwarz inequality to bound the following terms:

〈A(xk+1 − xk),λk+1 − λk〉

≥ − 1

2ρ1
‖A(xk+1−xk)‖2−ρ1

2
‖λk+1−λk‖2, ∀ρ1 > 0

βγ〈A(xk+1 − xk),λk − λ∗〉

≥ − βγ

2ρ2
‖A(xk+1−xk)‖2−βγρ2

2
‖λk−λ∗‖2,∀ρ2 > 0

〈βBTB(yk − yk+1),yk+1 − y∗〉

≥ − β

ρ3
‖B(yk+1 − yk)‖2 − βρ3‖B(yk+1 − y∗)‖2

≥− βmaxσ2(B)

ρ3
‖yk+1−yk‖2−βρ3 maxσ2(B)‖yk+1−y∗‖2 .

The remaining terms in (2.37) are bounded as follows:

〈x∗ − xk+1,∇f1(xk+1)−∇f1(xk)〉

+ 〈y∗ − yk+1,∇g1(yk+1)−∇g1(yk)〉

≥ −
L2
f

2ρ4
‖xk+1 − xk‖2 − ρ4

2
‖xk+1 − x∗‖2

−
L2
g

2ρ5
‖yk+1 − yk‖2 − ρ5

2
‖yk+1 − y∗‖2 (2.38)
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where we have used the Cauchy-Schwarz inequality and we leveraged the Lipschitz continuity of f1, g1.

Also, from (2.36), it can be noticed that:

‖uk − u∗‖2G − ‖uk+1 − u∗‖2G

= 2(uk − u∗)TG(uk − uk+1)− ‖uk − uk+1‖2G .

It therefore follows that:

‖uk−u∗‖2G−‖uk+1−u∗‖2G

≥‖uk−uk+1‖2G + γ‖λk+1 − λ∗‖2

−γ‖λk − λk+1‖2 + γ‖λk − λ∗‖2

−maxσ2(A)

ρ1
‖xk+1−xk‖2−ρ1‖λk+1−λk‖2

−βγmaxσ2(A)

ρ2
‖xk+1−xk‖2−βγρ2‖λk−λ∗‖2

−
L2
f

ρ4
‖xk+1 − xk‖2 − ρ4‖xk+1 − x∗‖2

−
L2
g

ρ5
‖yk+1 − yk‖2 − ρ5‖yk+1 − y∗‖2 + Φ

−βmaxσ2(B)

ρ3
‖yk+1−yk‖2−βρ3 maxσ2(B)‖yk+1−y∗‖2

and, rearranging the terms in a suitable way, we arrive at the following inequality:

‖uk−u∗‖2G−‖uk+1−u∗‖2G

≥(
1

α1
− maxσ2(A)

ρ1
− βγmaxσ2(A)

ρ2
−
L2
f

ρ4
)‖xk − xk+1‖2

+(
1

α2
− βmaxσ2(B)

ρ3
−
L2
g

ρ5
)‖yk − yk+1‖2

+(
1

β
− γ − ρ1)‖λk − λk+1‖2 + (2vf − ρ4)‖xk+1 − x∗‖2

+(2vg − ρ5 − βρ3 maxσ2(B))‖yk+1 − y∗‖2

+γ‖λk+1 − λ∗‖2 + (γ − βγρ2)‖λk − λ∗‖2 (2.39)

Recall that the goal is to prove the following inequality:

‖uk − u∗‖2G ≥ (1 + δ)‖uk+1 − u∗‖2G, (2.40)
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where δ > 0 is a constant. Fro brevity, denote the right-hand-side of (2.39) as C; then it is sufficient to prove

that:

C ≥ δ‖uk+1−u∗‖2G

=
δ

α1
‖xk+1−x∗‖2+ δ

α2
‖yk+1−y∗‖2+ δ

β
‖λk+1−λ∗‖2

which requires the following to hold true:

1

α1
− maxσ2(A)

ρ1
− βγmaxσ2(A)

ρ2
−
L2
f

ρ4
≥ 0

1

α2
− βmaxσ2(B)

ρ3
−
L2
g

ρ5
≥ 0,

1

β
− γ − ρ1 ≥ 0

2vf − ρ4 −
δ

α1
≥ 0, 2vg − ρ5 − βρ3 maxσ2(B)− δ

α2
≥ 0

γ − δ

β
≥ 0, γ − βγρ2 ≥ 0.

From the inequalities above, one can notice that the constant α1, α2 is closely related to various constants

as well as the singular values of A and B, denoted as σ(A) and σ(B), respectively. Specifically, this leads

to the following conditions for the step sizes:

δ

2vf−ρ4
≤ α1 ≤

1

( 1
ρ1

+βγ
ρ2

) maxσ2(A)+
L2
f

ρ4

, (2.41)

δ

2vg−ρ5−βρ3 maxσ2(B)
≤ α2 ≤

1
βmaxσ2(B)

ρ3
+
L2
g

ρ5

. (2.42)

To ensure that there exists step sizes α1, α2 that satisfy the condition above, one can choose ρ1 = 1, ρ2 =

1, ρ3 =
vg

2βmaxσ2(B)
, ρ4 = vf , ρ5 = vg, and from Assumption 2,3 we know we have all problem dependent

parameters uniform bounded. Choosing the biggest step sizes we have:

α1 =
1

(1 + βγ)σ̃2
A +

L̃2
f

ṽf

, α2 =
1

2β2 max σ̃4
B

ṽg
+

L̃2
g

ṽg

with, additionally, δ satisfying the following:

δ ≤
ṽf

(1 + βγ)σ̃2
A +

L̃2
f

ṽf

, δ ≤ ṽg
4β2σ̃4

B
ṽg

+
2L̃2

g

ṽg

. (2.43)
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We already know that δ ≤ βγ; therefore, eventually, one can pick δ as

δ = min

 ṽf

(1 + βγ)σ̃2
A +

L̃2
f

ṽf

,
ṽg

4β2σ̃4
B

ṽg
+

2L̃2
g

ṽg

, βγ

 .

As for other parameters, it turns out that:

1

β
− γ − 1 ≥ 0, γ − βγ ≥ 0 ⇒ βγ + β ≤ 1, β ≤ 1.

�
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CHAPTER 3. ZEROTH ORDER TIME-VARYING OPTIMIZATION

3.1 Introduction

In this chapter, we seek to build a zeroth-order dynamic distributed algorithm for time-varying optimiza-

tion problems. Specifically, we consider cases where gradient of objective is computationally expensive or

the explicit objective formulation is unknown, and we only have access to function values of the objective,

i.e. zeroth-order information. For each time instance, we query the function values from a zeroth-order

oracle and construct gradient estimations to feed to our algorithm. By doing this, we avoid expensive

gradient evaluation and decrease computation complexity. The resulting algorithm is expected to perform

faster (when gradient evaluation is expensive) and have comparable tracking ability as first-order methods

(in which exact gradient information is required). We provide a thorough analysis on the convergence of

proposed algorithm and some numerical results on a power system model.

3.2 Problem Formulation and Algorithm

To outline ideas, consider the time-varying problem

min
x∈X (tk),y∈Y(tk)

C(x,y; tk) (3.1a)

s.t. A(tk)x + B(tk)y = 0, (3.1b)

where x = [xn]n∈N ,y = [yn]n∈N are the decision variables, C(x,y; tk) :=
∑

nCn(xn,yn; tk) is the

summation of cost functions for local nodes. Note that there is only linear equality constraint in (3.1),

however, we can always add slack variables to linear inequality constraints to make them equalities. The

compact version of augmented Lagrangian function for (3.1) at time tk is shown as follows:

L(x,y,λ; tk) = C(x,y; tk) +
ρ

2

∥∥∥∥A(tk)x + B(tk)y +
λ

ρ

∥∥∥∥2

. (3.2)
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We assume that the precise expression of the gradient of objective function is not available. Then a stochastic

gradient estimate ofC(x,y; tk) can be obtained by one-point or two-point random function evaluations [50–

52]; specifically, with u being random vector in the unit sphere, δ > 0 a user-defined constant, and N the

total number of nodes, the scaled function evaluation at a perturbed point yields an estimate of the gradient:

One-point:

∇xC(x,y; t) ≈ NC(x + δ,y; t)− C(x,y; t)

δ
= Eu

[
N

δ
C(x + δu,y; t)u

]
, (3.3a)

∇yC(x,y; t) ≈ NC(x,y + δ; t)− C(x,y; t)

δ
= Eu

[
N

δ
C(x,y + δu; t)u

]
, (3.3b)

Two-point:

∇xC(x,y; t) ≈ NC(x + δ,y; t)−C(x− δ,y; t)

2δ

=Eu

[
N

2δ
(C(x + δu,y; t)−C(x− δu,y; t))u

]
, (3.4a)

∇yC(x,y; t) ≈ NC(x,y + δ; t)−C(x,y − δ; t)
2δ

=Eu

[
N

2δ
(C(x,y + δu; t)−C(x,y − δu; t))u

]
. (3.4b)

According to the above expressions, let us define the following quantities: Ĉ(x, t), Ĉ2(x, t), Ĉ(y, t), Ĉ2(y, t)

be noisy measurements of the cost,

Ĉ1(x, t) = C(x(t) + δu(t),y(t); t), Ĉ1(y, t) = C(x(t),y(t) + δu(t); t), (3.5a)

Ĉ2(x, t) = C(x(t)− δu(t),y(t); t), Ĉ2(y, t) = C(x(t),y(t)− δu(t); t), (3.5b)

We use the following strategies to estimate the gradients:

• One-point estimation:

∇̂xC(tk) =
N

δ
(Ĉ1(x, tk)− C(x,y, tk))u(tk), (3.6)

∇̂yC(tk) =
N

δ
(Ĉ1(y, tk)− C(x,y, tk))u(tk) (3.7)

• Two-point estimation:

∇̂xC(tk) =
N

2δ
(Ĉ(x, tk)− Ĉ2(x, t))u(tk), ∇̂yC(tk) =

N

2δ
(Ĉ(y, tk)− Ĉ2(y, t))u(tk). (3.8)
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Using the above quantities, our proposed algorithm involves the following steps:

Perform (3.7) or (3.8) (3.9a)

x(tk+1) = projXR(tk)

{
x(tk)− α

(
∇̂xC(tk)+ρA(tk)

>
[
A(tk)x(tk) + B(tk)y(tk) +

λ(tk)

ρ

] )}
(3.9b)

y(tk+1) = projYR(tk)

{
y(tk)−α

(
∇̂yC(tk)+ρB(tk)

>
[
A(tk)x(tk+1) + B(tk)y(tk) +

λ(tk)

ρ

] )}
(3.9c)

λ(tk+1) = λ(tk) + ρ(A(tk)x(tk+1) + B(tk)y(tk+1)) (3.9d)

where XR(tk) = (1 − R)X := {(1 − R)x : x ∈ X},YR(tk) = (1 − R)Y := {(1 − R)y : y ∈ Y} are

proper restrictions of X (tk),Y(tk) to ensure feasibility of the randomized point x̃(tk), ỹ(tk) [50, 53]. The

one-point or two-point estimate can also be replaced by the multi-point estimate as follows:

∇̂xC(tk) =
N

δ(M − 1)

M−1∑
m=1

(Ĉ(x̃m(tk), tk)− Ĉ(x(tk), tk))um(tk), (3.10a)

∇̂yC(tk) =
N

δ(M − 1)

M−1∑
m=1

(Ĉ(ỹm(tk), tk)− Ĉ(y(tk), tk))um(tk), (3.10b)

for M − 1 random perturbations {um(tk)}, {vm(tk)} [51, 52], where

x̃m(tk+1) = x(tk+1) + δum(tk+1),

ỹm(tk+1) = y(tk+1) + δum(tk+1).

The corresponding algorithm for multi-point estimate follows the same procedure as (3.9). In the proposed

setting, one-point estimates are suitable for fast changing problems. Two-point or multi-point estimates,

however, are suitable for relatively slower changing problems in exchange for the advantage of variance

reduction in the gradient estimator.

3.3 Numerical Experiment

As a test to verify the feasibility of the proposed approach, we considered a time-varying convex optimal

power flow problem (see, e.g.,chapter 2 or [54]), where clients in the network only share objective function

values to the system upon receiving the power signals as shown in Figure 3.4.
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Figure 3.1: Voltage regulation achieved in real time implementation

Figure 3.4: Power systems query function value from clients

A 2-point estimation strategy is utilized to approximate the objective gradient. In Figure. 3.1, we can see

that zeroth order algorithm is able to regulate voltage within bounds in real time; the performance displayed

here is almost as good as first order methods as shown in chapter 2. Note that even there are some large

changes in the voltage profile, our algorithm is still able to track the optimal trajectory. In Fig. 3.2, the plot

displays the optimal trajectory (color-coded in red) of real power at feeder head, obtained by varying the cost

function as well as the the constraints and trajectory obtained by (3.9) (color-coded in green). We can see

that our proposed zeroth order algorithm is able to regulate P k0 close to optimal solution P0,set in real time.
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Figure 3.2: Tracking ability achieved through proposed algorithm (3.9)

We also test situations where the algorithm is implemented in a slow pace, i.e. running proposed algorithm

for 50 seconds or 100 seconds without updating variables to the system. With this setup we intend to

find out whether running proposed algorithm with updated information can cause problems. We can see that

the trajectory is still somehow mimicking the optimal solution, but the tracking accuracy drops dramatically,

which demonstrates that real time implementation is necessary in this considered application. In Figure. 3.3,

we further compare voltage violations between real time implementation and slow pace implementation. The

results show that slow pace implementation can cause high voltage violation and eventually damage power

system.

3.4 Proof of Zeroth Order Time-Varying ADMM

For notation simplicity, we discard the time-varying notation tk and use superscript(k). Let the objective

function be C(x,y; tk) = f (k)(x) + g(k)(y), our problem becomes:

min f (k)(x) + g(k)(y) (3.11a)

s.t. A(k)x + B(k)y = b, (3.11b)



www.manaraa.com

36

6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00

Time

0

0.2

0.4

0.6

0.8

1

V
o
lt
a
g
e
 v

io
la

ti
o
n

ZADMM (real time)

ZADMM (50s)

ZADMM (100s)

Figure 3.3: Update variables in a slow pace results in failure of voltage regulation

Define the augmented Lagrangian function (compact version) as follows:

L(k)(x,y,λ) = f (k)(x) + g(k)(y) +
ρ

2

∥∥∥∥A(k)x + B(k)y − b− λ
ρ

∥∥∥∥2

.

Corresponding algorithm is as follows:

y(k+1)= arg min
y

1

2α
‖y − y(k)‖2

+

〈
∇̂g(k)(y(k)) + ρ(B(k))T (A(k)x(k) + B(k)y(k) − b− λ

(k)

ρ
),y − y(k)

〉
, (3.12a)

x(k+1)= arg min
x

1

2α
‖x− x(k)‖2

+

〈
∇̂f (k)(x(k)) + ρ(A(k))T (A(k)x(k) + B(k)y(k+1) − b− λ

(k)

ρ
),x− x(k)

〉
. (3.12b)

λ(k+1) = λ(k) − ρ(A(k)x(k+1) + B(k)y(k+1) − b) (3.12c)

where ∇̂f (k), ∇̂g(k) are zeroth order gradient estimation of f (k), g(k) in the form of (3.7)(3.8) or (3.10),

depending on what estimate strategy we are using. For ease of readability, we first present the main theo-

retical result, specifying sufficient conditions under which the desired tracking capability can be obtained.

Subsequently, we will then verify the conditions.

Assumption 5. f (k), g(k) are strongly convex, smooth functions for each time instance k.
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Assumption 6. Let w∗,(k) = {x∗,(k),y∗,(k),λ∗,(k)} be the optimal solution of (3.11) at time k. Successive

difference of optimal solutions of (3.11) is bounded, i.e.

‖w∗,(k+1) −w∗,(k)‖G ≤ σw (3.13)

where G is some positive definite matrix.

Before we go to the main result, we have following properties of zeroth order estimation (see [55]):

Remark:

• Let ∇̂f (k)(x(k)), ∇̂g(k)(y(k)) be the zeroth order estimation, taking expectation w.r.t random vector

u(k) conditioned on x(k) or y(k) we have

Eu(k)(∇̂f (k)(x(k))) = ∇φf (k)(x
(k)),Eu(k)(∇̂g(k)(y(k))) = ∇φg(k)(y

(k)) (3.14)

where φf (k)(x
(k)) := Ev(f (k)(x(k) + δv)), φg(k)(y

(k)) := Ev(g(k)(y(k) + δv)) are the smoothed

version of f (k)(x(k)), g(k)(y(k)), v is drawn from a unit ball.

• f, g, φf , φg all have Lipschitz gradient (with Lipschitz constant L̂f , L̂g, Lf , Lg, respectively), i.e.

‖∇f(x1)−∇f(x2)‖ ≤ L̂f‖x1 − x2‖, ∀x1,x2

‖∇g(y1)−∇g(y2)‖ ≤ L̂g‖y1 − y2‖, ∀y1,y2

‖∇φf (x1)−∇φf (x2)‖ ≤ Lf‖x1 − x2‖, ∀x1,x2

‖∇φg(y1)−∇φg(y2)‖ ≤ Lg‖y1 − y2‖, ∀y1,y2

• We have the following bounds regarding the differences between gradient estimations ∇̂f (k)(x(k)),

∇̂g(k)(y(k)) and gradients of smoothed functions∇φf (k)(x(k)),∇φg(k)(y(k))

Eu(k)(‖∇̂f (k)(x(k))−∇φf (k)(x
(k))‖) ≤ σf (3.15a)

Eu(k)(‖∇̂g(k)(y(k))−∇φg(k)(y
(k))‖) ≤ σg (3.15b)

where σf , σg are positive constants.
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• We have the following bounds regarding the differences between∇f(x),∇g(y) and∇φf (x),∇φg(y)

‖∇f(x)−∇φf (x)‖ ≤ δ2

2
LfN , σ̄f (3.16a)

‖∇g(y)−∇φg(y)‖ ≤ δ2

2
LgN , σ̄g (3.16b)

Theorem 2. At each time instance k, suppose that Assumption 5 holds; let w(k) = {x(k),y(k),λ(k)}

be iterates generated by our zeroth order algorithm (3.12) and w∗,(k) = {x∗,(k),y∗,(k),λ∗,(k)} be the

optimal solution of (3.11) at time k; If the following is true for some positive definite matrix G and ψ =

F(σf , σg, σ̄f , σ̄g, R) ≥ 0,

E(‖w(k) −w∗,(k)‖G) ≤ rE(‖w(k−1) −w∗,(k)‖G) + rψ, (3.17)

where 0 < r < 1 is a constant, then it holds that:

lim
k→∞

supE(‖w(k) −w∗,(k)‖G) ≤ lim
k→∞

(
r(1− rk)

1− r
σw + rkE(‖w(0) −w∗,(0)‖G) +

r(1− rk)
1− r

ψ

)
≤ r(σw + ψ)

1− r
, (3.18)

where σw is some positive constant.

Clearly, this theorem critically depends on the sufficient condition (3.17), which indicates that the iterates

generated by the algorithm exhibit are contracting updates, but with a bias term. In fact, (3.17) can be

regarded as linear convergence of w(k) for each fixed time instance k (i.e. static case) with bias. Next, we

discuss conditions under which (3.17) holds true. Also, notice that there is no term related to initialization

error in (3.18), which indicates that no matter how far away the iterate is from the optimal solution, our

proposed algorithm is able to steer it to track optimal solutions.

3.4.1 Linear Convergence for Static Case

Proposition 1. For fixed time instance k, let {wk} be the sequence generated by zeroth order algorithm

(3.12), w∗ be the optimal solution of problem (3.11), we have the following linear convergence with bias:

E(‖wk −w∗‖2G) ≥ (1 + γ)E(‖wk+1 −w∗‖2G)− ψ, (3.19)
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where ψ ≥ 0 is a constant, 0 < γ < 1

Proof. Optimality condition for the problem (3.11) for a fixed time instance is as follows:

ATλ∗ = ∇f(x∗) (3.20a)

BTλ∗ = ∇g(y∗) (3.20b)

Ax∗+By∗ − b = 0 (3.20c)

Optimality condition for the updates are as follows:

BT (λk+1 + ρB(yk+1 − yk) + βA(xk+1 − xk))

+
1

α2
(yk − yk+1) +

1

α2
(yk+1 − ȳk+1) = ∇̂g(yk) (3.21a)

AT (λk+1 + βA(xk+1 − xk)) +
1

α1
(xk − xk+1) +

1

α1
(xk+1 − x̄k+1) = ∇̂f(xk) (3.21b)

where ∇̂g(yk), ∇̂f(xk) are zeroth order gradient estimations; x̄(k+1), ȳ(k+1) are iterates before projection.

Define the gradient of smoothed version of f, g as φf , φg , we make the following changes

BT (λk+1 + ρB(yk+1 − yk) + βA(xk+1 − xk)) +
1

α2
(yk − yk+1) +

1

α2
(yk+1 − ȳk+1)

+∇g(yk+1)−∇φg(yk+1) +∇φg(yk+1)−∇φg(yk) +∇φg(yk)− ∇̂g(yk) = ∇g(yk+1) (3.22a)

AT (λk+1 + βA(xk+1 − xk)) +
1

α1
(xk − xk+1) +

1

α1
(xk+1 − x̄k+1)

+∇f(xk+1)−∇φf (xk+1) +∇φf (xk+1)−∇φf (xk) +∇φf (xk)− ∇̂f(xk) = ∇f(xk+1) (3.22b)

We know f(x) and g(y) are strongly convex, then we have

〈x1 − x2,∇f(x1)−∇f(x2)〉 ≥ vf‖x1 − x2‖2

〈y1 − y2,∇g(y1)−∇g(y2)〉 ≥ vg‖y1 − y2‖2
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Let x1 = xk+1,x2 = x∗,y1 = yk+1,y2 = y∗ and use (3.20) we have

〈BT (λk+1 + βB(yk+1 − yk) + βA(xk+1 − xk)) +
1

α2
(yk − yk+1) +

1

α2
(yk+1 − ȳk+1)−BTλ∗

+∇g(yk+1)−∇φg(yk+1) +∇φg(yk+1)−∇φg(yk)

+∇φg(yk)− ∇̂g(yk),yk+1 − y∗〉 ≥ vg‖yk+1 − y∗‖2 (3.23)

〈AT (λk+1 + βA(xk+1 − xk)) +
1

α1
(xk − xk+1) +

1

α1
(xk+1 − x̄k+1) +∇f(xk+1)−∇φf (xk+1)

+∇φf (xk+1)−∇φf (xk) +∇φf (xk)− ∇̂f(xk)−ATλ∗,xk+1 − x∗〉 ≥ vf‖xk+1 − x∗‖2 (3.24)

Summing up (3.23),(3.24) we have

〈λk+1 − λ∗ + βA(xk+1 − xk),B(yk+1 − y∗)〉+ 〈β〈B(yk+1 − yk),B(yk+1 − y∗)〉

+
1

α2
〈yk+1−ȳk+1,yk+1−y∗〉+ 1

α2
〈yk − yk+1,yk+1 − y∗〉+ 〈∇g(yk+1)−∇φg(yk+1),yk+1 − y∗〉

+ 〈∇φg(yk+1)−∇φg(yk),yk+1 − y∗〉+ 〈∇φg(yk)− ∇̂g(yk),yk+1 − y∗〉

+ 〈λk+1 − λ∗+βA(xk+1−xk),A(xk+1 − x∗)〉+ 1

α1
〈xk − xk+1,xk+1 − x∗〉

+
1

α1
〈xk+1 − x̄k+1,xk+1 − x∗〉+ 〈∇f(xk+1)−∇φf (xk+1),xk+1 − x∗〉

+ 〈∇φf (xk+1)−∇φf (xk),xk+1 − x∗〉+ 〈∇φf (xk)− ∇̂f(xk),xk+1 − x∗〉

≥ vf‖xk+1 − x∗‖2 + vg‖yk+1 − y∗‖2 (3.25)

Also we know from the optimality condition (3.20c) and dual updates that

1

β
(λk − λk+1) = A(xk+1 − x∗) + B(yk+1 − y∗) (3.26)
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Plugging (3.26) back to (3.25) we have

〈λk+1 − λ∗ + βA(xk+1 − xk),
1

β
(λk − λk+1)〉+ 〈β〈B(yk+1 − yk),B(yk+1 − y∗)〉

+
1

α2
〈yk+1 − ȳk+1,yk+1 − y∗〉+

1

α2
〈yk − yk+1,yk+1 − y∗〉

+ 〈∇g(yk+1)−∇φg(yk+1),yk+1 − y∗〉+ 〈∇φg(yk+1)−∇φg(yk),yk+1 − y∗〉

+ 〈∇φg(yk)− ∇̂g(yk),yk+1 − y∗〉+
1

α1
〈xk − xk+1,xk+1 − x∗〉

+ 〈∇f(xk+1)−∇φf (xk+1),xk+1 − x∗〉+
1

α1
〈xk+1 − x̄k+1,xk+1 − x∗〉

+ 〈∇φf (xk+1)−∇φf (xk),xk+1 − x∗〉+ 〈∇φf (xk)− ∇̂f(xk),xk+1 − x∗〉

≥ vf‖xk+1 − x∗‖2 + vg‖yk+1 − y∗‖2 (3.27)

We know that

1

α2
〈yk+1 − ȳk+1,yk+1 − y∗〉 =

1

α2
〈yk+1 − ȳk+1,yk+1 − ỹ∗〉+

1

α2
〈yk+1 − ȳk+1, ỹ∗ − y∗〉

1

α1
〈xk+1 − x̄k+1,xk+1 − x∗〉 =

1

α1
〈xk+1 − x̄k+1,xk+1 − x̃∗〉+

1

α1
〈xk+1 − x̄k+1, x̃∗ − x∗〉

where x̃∗, ỹ∗ are projections of x∗,y∗ onto XR,YR. Note that if x∗,y∗ are inside XR,YR, x̃∗ = x∗, ỹ∗ =

y∗. Since x(k+1), x̃∗ ∈ XR and y(k+1), ỹ∗ ∈ YR, we have

〈xk+1 − x̄k+1, x̃∗ − xk+1〉 ≥ 0,

〈yk+1 − ȳk+1, ỹ∗ − yk+1〉 ≥ 0.

Also we have

〈yk+1 − ȳk+1, ỹ∗ − y∗〉 ≥ − 1

2τ
‖yk+1 − ȳk+1‖2 − τ

2
‖y∗ − ỹ∗‖2

〈xk+1 − x̄k+1, x̃∗ − x∗〉 ≥ − 1

2τ
‖xk+1 − x̄k+1‖2 − τ

2
‖x∗ − x̃∗‖2

We know that ‖yk+1− ȳk+1‖2 ≤ ε2, ‖xk+1− x̄k+1‖2 ≤ ε2 (see [56]) and ‖ỹ∗−y∗‖2 ≤ R2, ‖x̃∗−x∗‖2 ≤

R2.
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Define G =


1
α1

I

1
α2

I− βBTB

1
β I

, w = (x; y;λ) we can derive

(wk−wk+1)TG(wk+1 −w∗) ≥ 〈A(xk+1−xk),λk+1−λk〉+ 〈∇g(yk+1)−∇φg(yk+1),y∗−yk+1〉

+ 〈∇φg(yk+1)−∇φg(yk),y∗ − yk+1〉+ 〈∇φg(yk)− ∇̂g(yk),y∗ − yk+1〉

+ 〈∇f(xk+1)−∇φf (xk+1),x∗ − xk+1〉+ 〈∇φf (xk+1)−∇φf (xk),x∗ − xk+1〉

+ 〈∇φf (xk)− ∇̂f(xk),x∗ − xk+1〉+ vf‖xk+1 − x∗‖2 + vg‖yk+1 − y∗‖2

− ε2

2α1τ
− ε2

2α2τ
− τR2

2α1
− τR2

2α2

⇒

(wk −wk+1)TG(wk −w∗) ≥ ‖wk −wk+1‖2G + 〈A(xk+1 − xk),λk+1 − λk〉

+ 〈∇g(yk+1)−∇φg(yk+1),y∗ − yk+1〉+ 〈∇φg(yk+1)−∇φg(yk),y∗ − yk+1〉

+ 〈∇φg(yk)− ∇̂g(yk),y∗ − yk+1〉+ 〈∇f(xk+1)−∇φf (xk+1),x∗ − xk+1〉

+ 〈∇φf (xk+1)−∇φf (xk),x∗ − xk+1〉+ 〈∇φf (xk)− ∇̂f(xk),x∗ − xk+1〉

+ vf‖xk+1 − x∗‖2 + vg‖yk+1 − y∗‖2 − ε2

2α1τ
− ε2

2α2τ
− τR2

2α1
− τR2

2α2
(3.28)

Recall the following equality

‖wk −w∗‖2G − ‖wk+1 −w∗‖2G = 2(wk −wk+1)TG(wk −w∗)− ‖wk −wk+1‖2G (3.29)

Plugging back to (3.28) we have

‖wk −w∗‖2G − ‖wk+1 −w∗‖2G ≥ ‖wk −wk+1‖2G + 2〈A(xk+1 − xk),λk+1 − λk〉

+ 2〈∇g(yk+1)−∇φg(yk+1),y∗ − yk+1〉+ 2〈∇φg(yk+1)−∇φg(yk),y∗ − yk+1〉

+ 2〈∇φg(yk)− ∇̂g(yk),y∗ − yk+1〉+ 2〈∇f(xk+1)−∇φf (xk+1),x∗ − xk+1〉

+ 2〈∇φf (xk+1)−∇φf (xk),x∗ − xk+1〉+ 2〈∇φf (xk)− ∇̂f(xk),x∗ − xk+1〉

+ 2vf‖xk+1 − x∗‖2 + 2vg‖yk+1 − y∗‖2

− ε2

α1τ
− ε2

α2τ
− τR2

α1
− τR2

α2
(3.30)
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For the cross terms in (3.30) we do the following:

〈∇φg(yk)−∇̂g(yk),y∗−yk+1〉 = 〈∇φg(yk)−∇̂g(yk),y∗−yk〉+〈∇φg(yk)−∇̂g(yk),yk−yk+1〉

≥ 〈∇φg(yk)− ∇̂g(yk),y∗ − yk〉 − η

2
‖∇φg(yk)− ∇̂g(yk)‖2 − 1

2η
‖yk+1 − yk‖2

〈∇φf (xk)−∇̂f(xk),x∗−xk+1〉 = 〈∇φf (xk)−∇̂f(xk),x∗−xk〉+ 〈∇φf (xk)−∇̂f(xk),xk−xk+1〉

≥ 〈∇φf (xk)− ∇̂f(xk),x∗ − xk〉 − η

2
‖∇φf (xk)− ∇̂f(xk)‖2 − 1

2η
‖xk+1 − xk‖2

Utilize Cauchy-Schwartz inequality to (3.30) we have

‖wk −w∗‖2G − ‖wk+1 −w∗‖2G ≥ ‖wk −wk+1‖2G − ρ1‖λk+1 − λk‖2 − 1

ρ1
‖A(xk+1 − xk)‖2

− ρ5‖∇g(yk+1)−∇φg(yk+1)‖2− 1

ρ5
‖yk+1−y∗‖2 − ρ2‖∇φg(yk+1)−∇φg(yk)‖2 −

1

ρ2
‖yk+1 − y∗‖2

+ 〈∇φg(yk)− ∇̂g(yk),y∗ − yk〉 − η‖∇φg(yk)− ∇̂g(yk)‖2 − 1

η
‖yk+1 − yk‖2

+ 〈∇φf (xk)− ∇̂f(xk),x∗ − xk〉 − η‖f(xk)− ∇̂f(x)k‖2 − 1

η
‖xk+1 − xk‖2

− ρ6‖∇f(xk+1)−∇φf (xk+1)‖2 − 1

ρ6
‖xk+1 − x∗‖2 − ρ4‖∇φf (xk+1)−∇φf (xk)‖2

− 1

ρ4
‖xk+1 − x∗‖2 + 2vf‖xk+1 − x∗‖2) + 2vg‖yk+1 − y∗‖2 − ε2

α1τ
− ε2

α2τ
− τR2

α1
− τR2

α2
(3.31)

We know φg, φf have Lipschitz gradients, thus we have

‖wk −w∗‖2G − ‖wk+1 −w∗‖2G ≥ ‖wk −wk+1‖2G − ρ1‖λk+1 − λk‖2 − 1

ρ1
‖A(xk+1 − xk)‖2

− ρ5‖∇g(yk+1)−∇φg(yk+1)‖2− 1

ρ5
‖yk+1 − y∗‖2 − ρ2L

2
g‖yk+1 − yk‖2 − 1

ρ2
‖yk+1 − y∗‖2

+ 〈∇φg(yk)− ∇̂g(yk),y∗ − yk〉 − η‖∇φg(yk)− ∇̂g(yk)‖2 − 1

η
‖yk+1 − yk‖2

+ 〈∇φf (xk)− ∇̂f(xk),x∗ − xk〉 − η‖f(xk)− ∇̂f(x)k‖2 − 1

η
‖xk+1 − xk‖2

− ρ6‖∇f(xk+1)−∇φf (xk+1)‖2 − 1

ρ6
‖xk+1 − x∗‖2 − ρ4L

2
f‖xk+1 − xk‖2 − 1

ρ4
‖xk+1 − x∗‖2

+ 2vf‖xk+1 − x∗‖2) + 2vg‖yk+1 − y∗‖2 − ε2

α1τ
− ε2

α2τ
− τR2

α1
− τR2

α2
(3.32)
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Take expectation to both side of (3.30) w.r.t random vector u conditioned on (xk; yk) (here we write E

instead of Euk for notation simplicity) , we have

E(〈∇φg(yk)− ∇̂g(yk),y∗ − yk〉) = 〈∇φg(yk)− E(∇̂g(yk)),y∗ − yk〉 = 0

E(〈∇φf (xk)− ∇̂f(xk),x∗ − xk〉) = 〈∇φf (xk)− E(∇̂f(xk)),x∗ − xk〉 = 0

where we have utilized the fact that E(∇̂f(xk)) = ∇φf (xk),E(∇̂g(yk)) = ∇φg(yk). Now (3.32) becomes

E(‖wk −w∗‖2G)− E(‖wk+1 −w∗‖2G) ≥ E(‖wk −wk+1‖2G)− ρ1E(‖λk+1 − λk‖2)

− 1

ρ1
E(‖A(xk+1 − xk))‖2 − L2

gρ2E(‖yk+1 − yk‖2)− 1

ρ2
E(‖yk+1 − y∗‖2)

− ηE(‖∇φg(yk)− ∇̂g(yk)‖2)− 1

η
E(‖yk+1 − yk‖2)− ρ5E(‖∇g(yk+1)−∇φg(yk+1)‖2)

− 1

ρ5
E(‖yk+1 − y∗‖2)−ρ6E(‖∇f(xk+1)−∇φf (xk+1)‖2)− 1

ρ6
E(‖xk+1 − x∗‖2)

− L2
fρ4E(‖xk+1 − xk‖2)− 1

ρ4
E(‖xk+1 − x∗‖2)− ηE(‖f(xk)−∇̂f(x)k‖2)−1

η
E(‖xk+1−xk‖2)

+ 2vfE(‖xk+1 − x∗‖2) + 2vgE(‖yk+1 − y∗‖2)− ε2

α1τ
− ε2

α2τ
− τR2

α1
− τR2

α2
(3.33)

We know that E‖∇φf (xk+1) − ∇̂f(xk+1)‖2 ≤ σ2
f ,E‖∇φg(yk+1) − ∇̂g(yk+1)‖2 ≤ σ2

g , where σf , σg

are maximal expected deviation of the gradient estimate (see e.g. [52]). Also we know that the difference

between smoothed version gradient and exact gradient is bounded, i.e. (3.16). Now (3.33) becomes

E(‖wk −w∗‖2G)− E(‖wk+1 −w∗‖2G) ≥ E(‖wk −wk+1‖2G)− ρ1E(‖λk+1 − λk‖2)

− 1

ρ1
E(‖A(xk+1−xk))‖2−L2

gρ2E(‖yk+1−yk‖2)− (
1

ρ2
+

1

ρ5
)E(‖yk+1−y∗‖2)− ησ2

g − ρ5σ̄
2
g

− 1

η
E(‖yk+1 − yk‖2)− L2

fρ4E(‖xk+1 − xk‖2)− (
1

ρ4
+

1

ρ6
)E(‖xk+1 − x∗‖2)− ησ2

f − ρ6σ̄
2
f

− 1

η
E(‖xk+1 − xk‖2) + 2vfE(‖xk+1 − x∗‖2) + 2vgE(‖yk+1 − y∗‖2)

− ε2

α1τ
− ε2

α2τ
− τR2

α1
− τR2

α2
(3.34)

≥ (
1

β
− ρ1)E(‖λk+1 − λk‖2) + (

1

α1
− 1

ρ1
ATA− L2

fρ4I−
1

η
I)E(‖xk+1 − xk‖2)

− ησ2
g − ησ2

f − ρ5σ̄
2
g − ρ6σ̄

2
f + (

1

α2
− βBTB− L2

gρ2I−
1

η
I)E(‖yk+1 − yk‖2)

+ (2vg −
1

ρ2
)E(‖yk+1 − y∗‖2) + (2vf −

1

ρ4
)E(‖xk+1 − x∗‖2)− ε2

α1τ
− ε2

α2τ
− τR2

α1
− τR2

α2
(3.35)
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Recall that our goal is to prove

E(‖wk −w∗‖2G) ≥ (1 + γ)E(‖wk+1 −w∗‖2G)− ψ (3.36)

Therefore, we need to make sure

C ≥ γE(‖wk+1 −w∗‖2G)− ψ, (3.37)

where C is the right hand side of (3.35). We can see that there’s no E(‖λk+1 − λ∗‖2) term in (3.35), using

similar idea as in [15] we can bound this term with other terms. First from (3.21a),(3.21b) we know that

BT (λk+1 + ρB(yk+1 − yk) + βA(xk+1 − xk)) +
1

α
(yk − yk+1)

+∇g(yk+1)−∇φg(yk+1) +∇φg(yk+1)−∇φg(yk) +∇φg(yk)− ∇̂g(yk) = ∇g(yk+1) (3.38)

AT (λk+1 + βA(xk+1 − xk)) +
1

α
(xk − xk+1)

+∇f(xk+1)−∇φf (xk+1) +∇φf (xk+1)−∇φf (xk) +∇φf (xk)− ∇̂f(xk) = ∇f(xk+1) (3.39)

Using optimality condition ATλ∗ = ∇f(x∗),BTλ∗ = ∇g(y∗) and Lipschitz continuity of∇f(x),∇g(y),

‖∇f(xk+1)−∇f(x∗)‖2 + ‖∇g(yk+1)−∇g(y∗)‖2

= ‖

AT

BT

 (λk+1 − λ∗) +

βATA− 1
α1

I

βBTA

 (xk+1 − xk) +

 0

βBTB− 1
α2

I

 (yk+1 − yk)

+

0

1

 (∇φg(yk)− ∇̂g(yk)) +

0

1

 (∇φg(yk+1)−∇φg(yk)) +

0

1

 (∇g(yk+1)−∇φg(yk+1))

+

1

0

 (∇φf (xk)− ∇̂f(xk)) +

1

0

 (∇φf (xk+1)−∇φf (xk)) +

1

0

 (∇f(xk+1)−∇φf (xk+1))‖2

≤ L̂2
f‖xk+1 − x∗‖2 + L̂2

g‖yk+1 − y∗‖2 (3.40)

A,B are not necessarily full row rank matrices, so without loss of generality, assume the first r rows of

[A,B] (denoted as [Ar,Br]) are linear independent, we have

[A,B] =

I

L

 [Ar,Br]
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If the initial λ0 is in the range space of [A,B] then λk+1 always stays in the range space of [A,B], it follows

that

λk+1 =

I

L

λk+1
r , λ∗ =

I

L

λ∗r
Thus we have AT

BT

 (λk+1 − λ∗) =

AT
r

BT
r

 (I + LTL)(λk+1
r − λ∗r)

⇒ ‖λk+1 − λ∗‖2 ≤ c̄

∥∥∥∥∥∥∥
AT

BT

 (λk+1 − λ∗)

∥∥∥∥∥∥∥
2

where I ∈ Rr×r is the identity matrix and L ∈ R(m−r)×r, E = (I+LTL)[Ar,Br] and c̄ = λ−1
min(EET )‖I+

LTL‖ > 0. Use the following inequalities to the LHS of (3.40)

‖p+ q‖2 ≥ (1− 1

µ
)‖p‖2 + (1− µ)‖q‖2

‖p+ q‖2 ≤ (1 +
1

µ
)‖p‖2 + (1 + µ)‖q‖2, ∀µ > 0

and taking expectation to both hand side of (3.40) we have

E(‖λk+1 − λ∗‖2) ≤c1E(‖xk − xk+1‖2) + c2E(‖yk − yk+1‖2) + c3E(‖xk+1 − x∗‖2)

+c4E(‖yk+1 − y∗‖2) + c5σ
2
f + c6σ

2
g + c7σ̄

2
f + c8σ̄

2
g (3.41)

where

c1 = µ1(1 +
1

µ2
)‖[βATA− 1

α1
I, βATB]‖2c̄+ µ1c̄

7∏
i=2

(1 + µi)(1 +
1

µ8
)L2

f ,

c2 = µ1(1 + µ2)(1 +
1

µ3
)‖βBTB− 1

α2
I‖2c̄+ µ1c̄

4∏
i=2

(1 + µi)(1 +
1

µ5
)L2

g,

c3 = (1− 1

µ1
)−1L2

f c̄, c4 = (1− 1

µ1
)−1L2

g c̄,

c5 = µ1

6∏
i=2

(1 +
1

µ7
)c̄, c6 = µ1(1 + µ2)(1 + µ3)(1 +

1

µ4
)c̄

c7 = µ1

8∏
i=2

(1 + µi)c̄, c8 = µ1

5∏
i=2

(1 +
1

µ6
)c̄
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Plugging (3.41), (3.35) to (3.37) we need the following to be true

(
1

β
− ρ1)E(‖λk+1 − λk‖2) + (

1

α1
− 1

ρ1
ATA− L2

fρ4I−
1

η
I)E(‖xk+1 − xk‖2)

− ησ2
g − ησ2

f − ρ5σ̄
2
g − ρ6σ̄

2
f + (

1

α2
− βBTB− L2

gρ2I−
1

η
I)E(‖yk+1 − yk‖2)

+ (2vg −
1

ρ2
)E(‖yk+1 − y∗‖2) + (2vf −

1

ρ4
)E(‖xk+1 − x∗‖2)

− ε2

α1τ
− ε2

α2τ
− τR2

α1
− τR2

α2
≥ γE(‖wk+1 −w∗‖2G)− ψ (3.42)

Rearrange terms we get

(
1

β
− ρ1)E(‖λk+1 − λk‖2) + (

1

α1
− 1

ρ1
ATA− L2

fρ4I−
1

η
I− c1I)E(‖xk+1 − xk‖2)

− (c6 + η)σ2
g − (c5 + η)σ2

f + (
1

α2
− βBTB− L2

gρ2I−
1

η
I− c2I)E(‖yk+1 − yk‖2)

+ (2vgI−
1

ρ2
I− c4I−

γ

α2
I + γβBTB)E(‖yk+1−y∗‖2) + (1− γ

β
)E(‖λk+1−λ∗‖2)− c7σ̄

2
f − c8σ̄

2
g

+ (2vf −
1

ρ4
− c3 −

γ

α1
)E(‖xk+1 − x∗‖2)− ε2

α1τ
− ε2

α2τ
− τR2

α1
− τR2

α2
≥ −ψ (3.43)

Define

ψ =
ε2

α1τ
+

ε2

α2τ
+
τR2

α1
+
τR2

α2
+ (c6 + η)σ2

g + (c5 + η)σ2
f + c7σ̄

2
f + c8σ̄

2
g ≥ 0, (3.44)

then we know if the following is true, we will have linear convergence with bias ψ:

1

β
− ρ1 ≥ 0,

1

α1
I− 1

ρ1
ATA− L2

fρ4I− c1I− c5I− L2
fρ5I � 0,

1

α2
I− βBTB− L2

gρ2I− c2I− c6I− L2
gρ3I � 0,

2vgI−
1

ρ2
I− 1

ρ3
I− c4I−

γ

α2
I + γβBTB � 0,

2vf −
1

ρ4
− 1

ρ5
− c3 −

γ

α1
≥ 0, 1− γ

β
≥ 0

To summarize, we have

α1 =
1

1
ρ1

maxσ2(A) + L2
f (ρ4 + ρ5) + c1 + c5

, α2 =
1

βmaxσ2(B) + L2
g(ρ2 + ρ3) + c2 + c6

γ = min(
2vf − 1

ρ4
− 1

ρ5
− c3

1
ρ1

maxσ2(A) + L2
f (ρ4 + ρ5) + c1 + c5

,
2vg − 1

ρ2
− 1

ρ3
− c4

L2
g(ρ2 + ρ3) + c2 + c6

,
1

β
)
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Then we can have the following result

E(‖wk −w∗‖2) ≥ (1 + γ)E(‖wk+1 −w∗‖2)− ψ (3.45)

�

3.4.2 Proof of Theorem 1

Proof. Now that we have (3.17), we have

E(‖w(k) −w∗,(k)‖G) ≤ rE(‖w(k−1) −w∗,(k)‖G) + rψ,

where 0 < r = 1
1+γ < 1. Based on this and triangle inequality we have

E(‖w(k)−w∗,(k)‖G) ≤ rE(‖w(k−1)−w∗,(k−1)+w∗,(k−1)−w∗,(k)‖G) + rψ

≤ rE(‖w(k−1)−w∗,(k−1)‖G)+rE(‖w∗,(k−1)−w∗,(k)‖G) + rψ

≤ r(rE(‖w(k−2)−w∗,(k−2)‖G) + rE(‖w∗,(k−2) −w∗,(k−1)‖G) + rψ)

+ rE(‖w∗,(k−1) −w∗,(k)‖G) + rψ

. . .

≤ rkE(‖w(0) −w∗,(0)‖G) +

k∑
i=1

rk−i+1E(‖w∗,(i−1) −w∗,(i)‖G) +

k∑
i=1

rk−i+1ψ.

From out assumption we know E(‖w∗,(i−1) −w∗,(i)‖G) ≤ σw Taking k → +∞, we can derive

lim
k→∞

E(‖w(k) −w∗,(k)‖G)

≤ lim
k→∞

(
r(1− rk)

1− r
σw + rkE(‖w(0) −w∗,(0)‖G) +

r(1− rk)
1− r

ψ

)
⇒ lim sup

k→∞
E(‖w(k) −w∗,(k)‖G) ≤ r

1− r
(σw + ψ).

The desired result is obtained. �
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CHAPTER 4. DISTRIBUTED CONTROLLERS SEEKING AC OPTIMAL POWER

FLOW SOLUTIONS USING ADMM

4.1 Introduction

This chapter focuses on power distribution systems with inverter-interfaced renewable energy sources

(RESs), and develops a distributed control framework to steer the RES output powers to solutions of AC opti-

mal power flow (OPF) problems. This problem is a special case of time-varying optimization, where random

error is added to static case problem. The design of distributed control algorithm is based on suitable linear

approximation of the AC power-flow equations, and leverages the so-called alternating direction method of

multipliers (ADMM). Convergence of the RES-inverter output powers to solutions of the approximate AC

OPF problem is established under suitable conditions on the mismatches between the commanded setpoints

and actual RES output powers. Overall, since the proposed scheme can be cast as an ADMM with inexact

primal and dual updates, the convergence results can be applied to more general distributed optimization

settings. The overarching objective of this chapter is to leverage the flexibility offered by power-electronics-

interfaced RESs to address reliability and power-quality concerns that emerge from reverse power flows

and renewable generation volatility [57, 58]. Similar to e.g., [59–62], the general control strategy involves

a continuous update of the RES setpoints based on current output powers and given OPF objectives (e.g.,

ensuring voltage regulation, minimization of power losses, as well as maximization of economic benefits to

utility and end users).

Prior works in context include [63], wherein feedback control architectures that seek Karush-Kuhn-

Tucker (KKT) optimality conditions for economic dispatch in transmission systems are developed, and

[64], where a heuristic comprising continuous-time dual ascent and discrete-time reference-signal updates

is proposed; local stability of the resultant closed-loop system is also established in [64]. A feedback control

algorithm for a finite-horizon economic dispatch problem for distributed energy resources is also considered

in [65]. Focusing on AC OPF models, a continuous-time saddle-point-flow method is utilized in [66];
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however, stability analysis is available only for specific optimization settings. A reactive power control

strategy is proposed in [67] for single-phase distribution systems with a tree topology based on the so-called

extremum-seeking control method. Stochastic dual-subgradient solvers are developed in [68] to achieve the

solutions of ergodic OPF formulations, based on exact and approximate grid models. An online AC OPF

algorithm is proposed in [60] for distribution systems with a tree topology. A controller for a number of

resources in general microgrid and distribution-system settings is developed in [61, 62], based on gradient-

steering algorithms; the algorithm in [61, 62] is composable in the sense that subsystems can be aggregated

into virtual devices that hide their internal complexity, it accounts for errors in the implementable power

setpoints, and the average setpoints are provably convergent (on average) to the minimum of the considered

control objective. A dual-subgradient method is utilized in [59] to develop feedback controllers that drive the

RES output powers to solutions of convex surrogates of the AC OPF; convergence results are available for

diminishing stepsize rules in the dual subgradient. A feedback control strategy is proposed in [12] to track

solutions of time-varying OPF solutions based on primal-dual methods applied to a modified Lagrangian

function.

A key contribution of the present paper consists in leveraging the so-called Alternating Direction Method

of Multipliers (ADMM) [69] to develop distributed controllers that pursue solutions of the AC OPF problem.

The choice of ADMM is motivated by its favorable scalability with respect to the system size as well as the

superior convergence properties compared to subgradient methods [70,71]. For instance, while convergence

results are available for the control scheme in [59] only for for diminishing stepsize rules, the ADMM-based

framework proposed here allows one to utilize a constant stepsize, which is desirable for practical imple-

mentations. Q-linear convergence is achieved in the gradient-based method proposed in [12], but at the

cost of perturbing the optimal solution of the underlying AC OPF. To facilitate the design of computation-

ally affordable ADMM-based controllers, the paper leverages appropriate linear approximations of the AC

power-flow equations [49,72–75]. Based on this linear approximation, two distinct control strategies are de-

veloped to trade off convergence speed for computational complexity: in the first strategy, the update of the

optimization variables that are proxies for voltage magnitudes is performed by solving a linearly-constrained

quadratic program, whereas a simpler projected gradient step is involved in the second setting. In both cases,
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convergence of the RES-inverter output powers is established under suitable conditions on the stepsize and

responsiveness of the RES inverters to power commands. The algorithms afford a distributed solution where

both the distribution system operator (DSO) and RES-owners pursue given performance objectives, while

ensuring that system operational constraints are observed.

The resultant control framework is close in spirit to the feedback-control strategies proposed in, e.g., [59,

60, 62], where RES setpoints are continuously updated based on current output powers, given OPF objec-

tives, as well as relevant voltage constraints; however, compared to [62] and [60], the proposed framework

does not resort to relaxations (e.g., barrier functions) to enforce voltage limits. Further, while [60] is ap-

plicable to single-phase radial systems, the method proposed here is applicable to multi-phase settings.

Compared to [59], the proposed method requires less stringent assumptions on the mismatch between com-

manded setpoints and current system outputs and offers improved convergence properties.

Overall, the paper offers the following contributions:

• Online algorithms that pursue solutions of AC OPF problems are designed by leveraging (and suitably

adapting) the ADMM;

• Two different algorithmic solutions are proposed to trade-off convergence for computational com-

plexity;

• Convergence of ADMM with inexact primal and dual updates is established. To the best of our

knowledge, this is a unique contribution in the broader optimization literature.

Some preliminary results were presented in [76].

4.2 Problem Formulation

4.2.1 Notation

Throughout the paper, Re(·) and Im(·) denote the real and imaginary parts of a complex number,

respectively; for given vector x, diag(x) denotes a diagonal matrix with diagonal entries composed of

the components of x; j :=
√
−1. Notation ‖x‖ denotes the `2 norm of x. For column vectors x,y,
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[x; y] := [x>,y>]>; For a given matrix X, vector X(i) denotes the ith row of X. For given matrix D and

vector z, ‖z‖2D = z>Dz.

4.2.2 Problem setup

Consider modeling the dynamics of the output-powers of the RES inverters through the following gen-

eral dynamical model [59, 77, 78]:

ẋi(t) = fi(xi(t),ui(t)), (4.1a)

yi(t) = ri(xi(t)), (4.1b)

where:

• xi(t) := [Pi(t), Qi(t)]
T, with Pi(t) and Qi(t) denoting the active and reactive output powers (aver-

aged over one AC cycle) of the RES inverter i;

• ui(t) := [P̄i(t), Q̄i(t)]
T collects the commanded active and reactive powers (i.e., power setpoints);

• fi : R2 × R2 → R2 and ri : R2 → R2 are arbitrary (non)linear functions; and,

• yi(t) is a measurement of xi(t) collected at time t.

These dynamics capture the behavior of primal-level controllers embedded into the RES inverters [78].

For a given power setpoint, the following is assumed regarding the regulation capabilities of the primal-level

controllers [64, 77]:

Assumption 7. For a given power setpoint ui, (4.1) is asymptotically stable and the equilibrium point xi

satisfies:

0 = fi(xi,ui), ui = ri(xi). (4.2)

This assumption captures the operation of existing devices, where the primary-controllers are designed so

that the output powers are regulated to the commanded powers xi, provided the commanded powers are

feasible [78].
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Regarding the electrical system, consider a distribution network with N + 1 nodes collected in the

set N = {0} ∪ ND ∪ NO, where 0 denotes the secondary of the step-down transformer, and ND,NO

denote the set of locations with and without RESs, respectively. Let Ynet ∈ C(N+1)×(N+1) denote the

network admittance matrix, which is formed according to the system topology and π-equivalent model of

the distribution lines. Define the vector i := [I1, . . . , IN ]> ∈ CN , where In denotes the phasor of the current

injected at node n. Let v := [V1, . . . , VN ]> ∈ CN , where Vi = |Vi|∠θi ∈ C denotes the voltage phasor at

node i, where V0e
jθ0 is the slack-bus voltage with V0 denoting the voltage magnitude. Let P̄i + jQ̄i denote

the setpoints of RES i ∈ ND, and define ui := [P̄i, Q̄i]
> for brevity. Similarly, let Pl,i + jQl,i denote the

non-controllable complex load at node i ∈ N and di := [Pl,i, Ql,i]
>. Based on Kirchhoff’s Current Law

and Ohm’s Law, we can establish the following linear relationship:I0

i

 =

ỹ ȳ>

ȳ Y


︸ ︷︷ ︸

Ynet

V0e
jθ0

v

 , (4.3)

where Ynet is partitioned as ȳ ∈ CN , Y ∈ CN×N , and ỹ ∈ C\{0}.

Consider then the following prototypical OPF formulation to optimize the steady-state operation of the

distribution network:

min
v,i,ui

H(v) +
∑
i∈ND

Gi(ui) (OPF)

s.t. i = Yv + ȳV0e
jθ0 , (4.4a)

ViI
∗
i = P̄i − Pl,i + j(Q̄i −Ql,i), ∀i ∈ ND (4.4b)

VnI
∗
n = −Pl,n − jQl,n, ∀n ∈ NO (4.4c)

V min ≤ |Vi| ≤ V max, ∀i ∈ N (4.4d)

ui = [P̄i, Q̄i]
> ∈ Yi ∀i ∈ N , (4.4e)

where Pl,i + jQl,i denotes the loads at node i; (4.4b) and (4.4c) describe power-balance equations for

nodes with and without RES inverters, respectively; V min and V max are prescribed voltage limits (e.g.,

ANSI C84.1 limits); the function H(v) : CN → R captures network-oriented performance objectives;
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Gi(ui) : R2 → R models optimization objectives at the RES side (e.g., minimization of real power curtailed

and reactive power provisioning). Finally, the set Yi ⊂ R2 models hardware and operational constraints of

the inverter i. For example, for photovoltaic (PV) systems, Yi takes the following form:

Yi :={(P̄i, Q̄i) : Pmin
i ≤ P̄i ≤ P av

i , P̄ 2
i + Q̄2

i ≤ S2
i } (4.5)

where P av
i ≥ 0 denotes the available real power, and Si is the inverter capacity.

Problem (4.4) defines the optimal operating setpoints ui = [P̄i, Q̄i]
T of the RES inverter i in terms

of commanded inputs and, based on Assumption 1, of the steady-state output powers. However, problem

(4.4) is a nonconvex and NP hard problem in general [79]. Recently, convex relaxation methods have been

explored to solve the OPF with reduced computational burden, while possibly retaining globally optimal

solutions [80]. In this paper, to facilitate the design of low-complexity controllers that can be implemented

on microcontrollers that accompany power-electronics interfaces of gateways and inverters, this paper lever-

ages suitable linear approximations of (4.4) [49, 74, 75]. In particular, a linearization approach proposed

in [75] is utilized, which is briefly discussed in the next section.

Remark. For ease of exposition, the problem formulation is tailored to the case where one RES is

connected at each of the nodes ND; however, the proposed algorithm can be utilized in settings where RES

aggregations are present at (some of) the nodes.

4.2.3 Leveraging approximate linear models

By plugging (4.4a) into (4.4b)-(4.4c), the power-balance equations can be rewritten as:

s = diag(v)i∗ = diag(v)(Y∗v∗ + ȳ∗V0e
−jθ0), (4.6)

where s is a vector collecting the net complex power injections throughout the network. Consider then

re-writing the voltages v satisfying the nonlinear power-balance equations (4.6) as v = vnom + vd, where

vnom = |vnom|∠θnom ∈ CN is a predefined nominal voltage profile and vd captures deviations around

vnom. Similar to [75], consider further setting vnom as vnom = −Y−1ȳV0e
jθ0 , which corresponds to the

voltage across the network with zero current injections (however, other linearization points can be utilized).



www.manaraa.com

55

Then, by plugging vnom into (4.6) and neglecting the second-order terms (in vd), we obtain the following

expression:

vd = Y−1diag
(

1

v∗nom

)
s∗. (4.7)

After expanding (4.7), one can readily derive expressions for the real and the imaginary parts of vd sepa-

rately; however, the resulting expression will couple the components of p and q, thus challenging the design

of computationally-affordable distributed algorithms. To bypass this hurdle, consider rearranging terms to

arrive at the following equivalent expression:

diag(v∗nom)Yvd = s∗. (4.8)

Define Y := G + jB, where G ∈ RN×N is the conductance matrix and B ∈ RN×N is the susceptance

matrix. Further, let M := diag(|vnom| cosθnom) and N := diag(|vnom| sinθnom). By expanding (4.8), the

following expressions can be obtained:

(MG + NB)Re(vd)− (MB−NG)Im(vd) = p (4.9a)

−(MG + NB)Im(vd)− (MB−NG)Re(vd) = q (4.9b)

where the components of vectors p and q are defined as: pi = P̄i − Pl,i and qi = Q̄i − Ql,i for i ∈ ND;

whereas, pi = −Pl,i and qi = −Ql,i for i ∈ NO. Clearly the expression for p and q are decoupled. For

notational simplicity, define the vector ∆ := [Re(vd); Im(vd)] ∈ R2N .

Based on these definitions, and noticing that |vnom| + Re{vd} serves as a first-order approximation to

the voltage magnitudes across the distribution network whenever the entries of vnom dominate vd, a convex

surrogate of the OPF problem can be formulated as:

min
∆,ui

H(∆) +
∑
i∈ND

Gi(ui) (OPF-2)

s.t. C(i)∆− P̄i + Pl,i = 0, i ∈ N\{0} (4.10a)

D(i)∆− Q̄i +Ql,i = 0, i ∈ N\{0} (4.10b)

∆ ∈ V, ui = [P̄i, Q̄i]
> ∈ Yi.
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where P̄i = Q̄i = 0 for nodes i ∈ NO and:

C :=

(
MG + NB,−MB + NG

)
∈ RN×2N (4.11a)

D :=

(
−MB + NG,−MG−NB

)
∈ RN×2N . (4.11b)

The set V is designed to enforce voltage regulation as [74]:

V := {∆ | V min − |vnom,i| ≤ ∆i ≤ V max − |vnom,i|,

i = 1, . . . , N}.

For notational simplicity, denote Φi = [C(i); D(i)] ∈ R2×2N , Φ = [Φ1; · · · ; ΦN ] ∈ R2N×2N , and di =

[Pl,i, Ql,i]
T. Then, (4.10) can be rewritten in the following compact form:

min
∆,ui

H(∆) +
∑
i∈ND

Gi(ui) (OPF-3)

s.t. Φi∆− ui + di = 0, i ∈ N\{0}, (4.12a)

∆ ∈ V, ui ∈ Yi. (4.12b)

4.3 Design of Online OPF Solvers

The objective is to design a distributed control scheme that steers the RES-inverter setpoints {ui ∈

Yi}Ni=1 (and, thus, the output powers {yi(t)}Ni=1) to the solution of the OPF problem (4.12). A brief overview

of ADMM-based algorithms is outlined next; the ADMM-based control architecture is then discussed in

Section 4.3.2.

4.3.1 Open-loop ADMM-based distributed optimization

Consider the following augmented Lagrangian function associated with problem (4.12):

L(∆, {ui}, {λi}) := H(∆) +
∑
i∈ND

Gi(ui) +
ρ

2

∑
i∈N\{0}

∥∥∥∥Φi∆− ui + di +
λi
ρ

∥∥∥∥2

, (4.13)

where λi ∈ RN is the Lagrangian multiplier associated with the linear constraint (4.12a), ρ > 0 is a design

parameter, and ui = 0 for i ∈ NO. ADMM involves an iterative procedure where the following steps are
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performed at each iteration k:

∆k = arg min
∆∈V

H(∆) +
∑

i∈N\{0}

ρ

2

∥∥Φi∆− uk−1
i + di − λk−1

i /ρ
∥∥2
, (4.14a)

λki = λk−1
i − ρ(Φi∆

k − uk−1
i + di), (4.14b)

uki = arg min
ui∈Yi

Gi(ui) +
ρ

2

∥∥Φi∆
k − ui + di − λki /ρ

∥∥2
. (4.14c)

One way to reduce the computational complexity associated with the update of the voltage-related vector

∆k is to consider solving the following quadratic approximation:

∆k = arg min
∆∈V

〈gk−1,∆−∆k−1〉+L
2

∥∥∥∆−∆k−1
∥∥∥2
, (4.15)

where L > 0 is a design parameter, and gk−1 denotes the gradient of the augmented Lagrangian function

with respect to ∆; particularly, gk−1 is given by:

gk−1 = ∇H(∆k−1) +
∑
i∈ND

Φ>i

(
Φi∆

k−1 − uk−1
i + di + λk−1

i /ρ

)
. (4.16)

It can be verified that the optimal solution of (4.15) amounts to a projected-gradient step in the following

form:

∆k = PV(∆k−1 − 1

L
gk−1), (4.17)

where PV denotes the projection operation onto the set V .

The steps described above lead to a distributed procedure that is provably convergent to a solution

of (4.12); the distributed algorithm is tabulated as Algorithm 1.

Algorithm 1 ADMM-based algorithm
1: Perform (4.14a) with two options:

• Option 1: Solve (4.14a).

• Option 2: Perform (4.17).

2: Perform (4.14b).
3: Perform (4.14c).

However, one drawback of Algorithm 1 is that the setpoints ui can be commanded to the RES inverters

only upon convergence. On the other hand, sending the setpoints to the RES inverters at each intermediate
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Figure 4.1: Illustration of the distributed framework (see also Algorithm 2). Steps. (4.19c) and (4.19d)
constitute the RES controller and they generate a discrete time signal utki , which is applied to the inverter
by utilizing a sample-and-hold unit. The inverter output is then sampled and utilized to update the control
signals.

step k leads to an open-loop procedure where no actionable feedback from the electrical system is utilized;

for instance, steps 2 and 3 of Algorithm 1 would utilize the commanded inputs {uki }i∈ND , which may not

necessarily coincide with the actual outputs powers of the RES inverters (commanded setpoints and output

powers coincide only after a given settling time of the primary controllers of the inverters). To capture

non-idealities of existing devices (which may not respond quickly to changes in the setpoints) as well as

discrepancies between the input setpoints and the power outputs due to faulty estimations of the maximum

available powers from the RESs, the next section will develop a control scheme that dynamically update

the setpoints of the devices based on current system outputs and problem parameters. The setting is close

in spirit to the feedback-control strategies proposed in e.g., [59, 60, 62]. Compared to [62] and [60], the

proposed framework does not resort to barrier-type functions to enforce voltage limits and is applicable

to multi-phase settings; the contribution over [59] consists in considering less stringent assumptions on

the mismatch between the commanded setpoints and current system outputs, and improved convergence

properties.
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4.3.2 From open-loop optimization to feedback-control

Similar to, e.g., [59, 60, 62], consider updates performed at discrete time instants t ∈ {tk, k ∈ N}. At

time tk, let utk = {utki }i∈N\{0}, ∆tk and λtk := {λtki }i∈N\{0} denote the primal and dual variables,

respectively. At time tk−1, the RES outputs are sampled as [cf. Fig. 4.1]:

y
tk−1

i = ri(xi(tk−1),di),∀ i ∈ ND. (4.18)

The measured output powers are then utilized to update the voltage-related vector ∆ and the dual variables

as follows:

Option 1 :∆tk = arg min
∆∈V

H(∆) +
∑

i∈N\{0}

ρ

2

∥∥∥∥Φi∆− y
tk−1

i + di −
λ
tk−1

i

ρ

∥∥∥∥2

, (4.19a)

Option 2 :∆tk = PV
(

∆tk−1 − 1

L
gtk−1

)
, (4.19b)

λtki = λ
tk−1

i − ρ(Φi∆
tk − y

tk−1

i + di). (4.19c)

utki = arg min
ui∈Yi

Gi(ui) +
ρ

2

∥∥∥∥Φi∆
tk − ui + di −

λtki
ρ

∥∥∥∥2

. (4.19d)

Note that (4.19d) produces the commands to the RES inverter (4.1) [cf. Fig. 4.1]. Different from (4.17), in

Option 2 the gradient vector gtk−1 is evaluated at y
tk−1

i , i.e.,

gtk−1 = ∇H(∆tk−1) +
∑
i∈ND

Φ>i

(
Φi∆

tk−1 − y
tk−1

i + di + λk−1
i /ρ

)
.

In summary, the controllers perform the steps tabulated as Algorithm 2.

Algorithm 2 ADMM-based OPF Controllers
1: At time tk−1, RES outputs are sampled as (4.18).
2: Perform (4.19a) or (4.19b).
3: Perform (4.19c) using the sampled RES outputs.
4: Perform (4.19d) and apply the resulting signal to (4.1a) during (tk−1, tk], i.e. ui(t) = utk , t ∈ (tk−1, tk].

5: When t = tk go to step 1.

The algorithm (4.19) affords a distributed implementation. With reference to the illustrative diagram in

Fig. 4.1, one possible distributed solution involves the following steps:
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i) update (4.19a) or (4.19b) can be performed at the DSO, after receiving y
tk−1

i and λtk−1

i from each

RES i;

ii) the DSO subsequently broadcasts to the RESs the vector ∆tk ;

iii) updates (4.19c) and (4.19d) are then performed locally at each individual RES i ∈ N\{0}. These

steps are computationally light and, when Gi(ui) is linear or quadratic and Yi is given as in (4.5), uki admits

a closed-form solution; see e.g., [12, Appendix B].

It is worth reiterating that the key differences compared to the open-loop optimization strategy (4.14) are:

1) the setpoints are commanded to the RES inverters at each time instant tk (whereas Algorithm 1 produces

setpoints only upon convergence of the ADMM); and, ii) measurements of the RES-inverter output-powers

are used in the updates. The (continuous-time) reference signals {ui(t)}i∈ND produced by the controller

have step changes at instants {tk, k ∈ N} and are left-continuous functions that take the constant values

{utki }i∈ND over the time interval (tk−1, tk]. When the interval (tk−1, tk] is longer than the settling time

of (4.1), then the RES output powers converge to the intermediate setpoints {utki }Ni=1 at each iteration; that

is, limt→t−k
‖yti − utki ‖ = 0. Hence, (4.14) and (4.19) coincide, and the well-known convergence claims

for the ADMM naturally apply to the present setup [69]. However, in case of slow-responding inverters,

or, when the updates (4.19) can be performed faster than the systems’ settling times, then one has that

the inverter outputs may not coincide with the commanded setpoints; particularly, define the error term

ηtki = utki − ytki , i ∈ ND to quantify this discrepancy. In the following, convergence of the RES output

powers when ηtki 6= 0 is analyzed.

4.3.3 Convergence Analysis

Algorithm 2 can be interpreted as a variation of the ADMM with inexact primal and dual updates. To

the best of our knowledge, convergence of the ADMM in this setting is not available in the prior literature.

This paper considers the following two types of updates:

1. Exact minimization in the primal steps using RES output {ytki } [i.e., option 1];

2. Gradient steps are performed in the primal steps using RES output {ytki } [i.e., option 2].



www.manaraa.com

61

In the remainder of this section, convergence of Option 2 is studied; in fact, Option 1 can be analyzed

using similar techniques, but with considerably simpler steps. To simplify the notation, the superscript tk is

hereafter dropped.

Define ηtk := ‖utk − ytk‖, and consider the following assumption.

Assumption 8. The gradient stepsize 1
L > 0 satisfies the following property:

(L− γ)I2N − ρΦ>Φ < 0, (4.20)

where I2N is the 2N ×2N identity matrix, and γ denotes the Lipschitz constant of∇H(∆), i.e. ‖∇H(x)−

∇H(y)‖ ≥ γ‖x− y‖, for all x,y ∈ dom H .

Further, assume that
∞∑
k=1

ηtk <∞.

Assumption 8 asserts that, for given loading and ambient conditions, the discrepancy between the com-

manded inputs and the output powers should diminish as the system reaches the AC OPF solution. From

Assumption 2, it is clear that L has to be greater than or equal to the largest eigenvalue of the Hessian matrix

of the augmented Lagrangian function (for a fixed ρ). In fact, from Assumption 8 it follows that:

LI2N < γI2N + ρΦ>Φ.

Since γ is the Lipschitz constant of∇H(∆), it follows that γI2N < ∇2H(∆), and hence:

LI2N < ∇2H(∆) + ρΦ>Φ,

where the right-hand-side is the Hessian matrix of the augmented Lagrangian function.

To facilitate analysis, define the vectors wtk := [utk ; ∆tk ;λtk ] and ŵtk := [ûtk ; ∆̂tk ; λ̂
tk

], where wtk

is the update generated by (4.19) (with possibly nonzero error terms ηtki = utki −ytki ), and ŵtk is generated

by the same iteration, but with zero error (i.e., 0 = utki − ytki ). Henceforth, ŵtk is referred to as the

“error-free” iterates. Let W ∗ be the optimal set of (4.12), which is nonempty, closed, and convex.

The ultimate goal of this analysis is to prove the convergence of iterates wtk . For the purpose of readi-

bility, we first state the main result of this paper in the following theorem:
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Theorem 3. Suppose that Assumption 4 and 8 hold true. Then the sequence wtk generated by (4.19b)-

(4.19d) converges to some w∞ ∈W ∗, where w∞ is a cluster point of the sequence {wtk}.

To prove this result, we start from the optimality condition. Denote the set of optimality conditions of

w as

D(w) :=


u− PY{u− [∇G(u) + λ]}

∆− PV{∆− [∇H(∆)−Φ>λ]}

Φ∆− u + d

 ,

dist(w,W ∗) := min{‖w − z∗‖ | z∗ ∈W ∗}.

Then it is easy to verify that the following holds:

dist(w,W ∗) = 0⇔ D(w) = 0. (4.21)

Lemma 2. There exists a constant τ > 0, such that

∥∥D(ŵtk)
∥∥2 ≤ τ ·

∥∥Φ∆tk−1 − ûtk + d
∥∥2

ρI
, ∀ k ≥ 1. (4.22)

To show convergence, the right-hand-side of (4.22) needs to approach 0 when k → ∞; this result is

provided by the following two lemmas.

Lemma 3. Let w∗ := [u∗; ∆∗;λ∗] be an optimal solution of (4.12). Then the following inequality holds

∥∥ŵtk −w∗
∥∥2

H̃
≤
∥∥wtk−1 −w∗

∥∥2

H̃
−
∥∥Φ∆tk−1 − ûtk + d

∥∥2

ρI

−
∥∥∥∆̂tk −∆tk−1

∥∥∥2

Ψ
, (4.23)

where H̃ :=


0 0 0

0 LI 0

0 0 1
ρI

 and Ψ := (L− γ)I− ρΦ>Φ.

Lemma 3 establishes a relationship between the exact and inexact updates in terms of the distance to an

optimal solution.
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Lemma 4. Let wtk = [utk ; ∆tk ;λtk ] and ŵtk = [ûtk ; ∆̂tk ; λ̂
tk

] be the inexact and exact iterates, respec-

tively. We have the following limit

lim
k→∞

∥∥Φ∆tk−1 − ûtk + d
∥∥2

ρI
= 0. (4.24)

The proofs of Theorem 3 and Lemma 3 are presented in the Appendix.

4.3.4 Relaxing the requirements on the RES outputs

In this section, Assumption 4 is relaxed to consider cases where the error sequence {ηtk} is no longer

diminishing; this case captures scenarios where 1) the primary controllers have a steady-state regulation

error (i.e., ytk 6= utk ) and/or 2) irradiance and load conditions are very fast changing.

To facilitate the design of distributed controllers in this setting, key is to consider a modified version

of (4.12) where the subproblem solved to update ∆ is unconstrained (this particular problem structure will

ensure convergence of the algorithm developed in this section). For notational simplicity, let LB(j) ≤ 0 and

UB(j) ≥ 0 be the lower and upper bounds for ∆j , respectively; that is:

LB(j) ≤ ∆j ≤ UB(j), j = 1, . . . , 2N.

From (4.12), it follows that Φ∆ + d = u, the following approximation can be utilized to express the

voltage-regulation constraints as linear functions of ui:

2N∑
j=1

|Φi,j | · LB(j)+di ≤ ui ≤
2N∑
j=1

|Φi,j | · UB(j) + di. (4.25)

We refer to the feasible set defined by (4.25) as V ′. Using (4.25), the approximate OPF problem becomes:

min
∆,ui

H(∆) +
∑
i∈ND

Gi(ui) (4.26a)

s.t. Φi∆− ui + di = 0, i ∈ N\{0}, (4.26b)

ui ∈ Yi ∩ V ′. (4.26c)

The algorithm (4.19) can be slightly modified to accommodate (4.26); particularly, the projection onto V in

(4.19a) should be removed and a projection onto V ′ should be added in (4.19d). The resultant algorithm can

be used to solve (4.26). We refer to this algorithm as Algorithm 3.
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Consider then the following assumption.

Assumption 9. Functions H(∆) and G(u) are strongly convex, Φ := [Φ1; · · · ; ΦN ] ∈ R2N×2N is full

rank, and∇H is Lipschitz continuous.

Based on this assumption, one can leverage the results of [70, Theorem 3.4] to obtain the following.

Corollary 1. If Assumption 9 holds, the iterates wtk generated by Algorithm 3 to solve the approximated

problem (4.26) and “error-free” iterates ŵtk satisfy the following inequality:

∥∥ŵtk −w∗
∥∥2

H̃
≤ (1− δ)

∥∥wtk−1 −w∗
∥∥2

H̃

−
∥∥ŵtk −wtk−1

∥∥2

H̃
, (4.27)

where δ ∈ (0, 1) is some positive constant.

Corollary 1 can be proved by following steps similar to [70, Theorem 3.4]. The main convergence results

are established next.

Theorem 4. Suppose that Assumption 9 holds and that there exists a constant ε such that

∥∥ytk − utk
∥∥ ≤ ε. (4.28)

Then, the sequence wtk generated by (4.19) to solve problem (4.26) satisfies
∥∥wtk −w∗

∥∥2

H̃
≤ (β + ξ)2, as

k →∞, where

ξ = ε

√
(1− δ)(1 + θ)× r

1− r
, β = ε

√
L‖Φ>‖2 + ρ,

are both constants and θ = 1−δ
r−1+δ > 0, 0 < r < 1 is some constant.

The theorem asserts that, if
∥∥ytk − utk

∥∥ ≤ ε for all k (which reflects the actual operation of some exist-

ing inverters), then the algorithm will converge to a ball centered around the optimal solution set of (4.26).

4.4 Numerical experiment

Numerical results are provided to corroborate the analytical findings and demonstrate the efficacy of

the proposed method. Consider the modified version of the IEEE 37-node test feeder taken from [59]; see



www.manaraa.com

65

also Fig. 4.2. In the OPF problem, the voltage limits are set to V min = 0.95 pu and V max = 1.05pu,

whereas V0 = 1 + j0 pu. With reference to the node numbering utilized in [59], assume that there are

6 PV systems located at nodes 4, 11, 22, 26, 29, and 32, and assume that the primary controllers of the

PV systems are modeled as a first-order system [78]. The following ratings are assumed: {Si}i∈ND =

{100, 240, 100, 200, 240, 160} kVA; Further, θ = π
2 , Pmin

i = 0, and the objective functions are set to:

H(∆) =10×
N∑
i=1

(∆(i)− 1)2, (4.29)

Gi(Pi, Qi) =ai(P
av
i − Pi)2 + bi(P

av
i − Pi)

+ ciQ
2
i + di|Qi|, (4.30)

where H(∆) promotes a flat voltage profile, and Gi(Pi, Qi) penalizes real power curtailment and limits the

amount of reactive power provided. As an example, the coefficients in (4.30) are chosen as ai = 1, bi =

10, ci = 0.01, di = 0.01 for i = 1, . . . , 4 and ai = 1, bi = 10, ci = 0.03, di = 0.03 for i = 5, 6. For the

ADMM-type methods, the following quantities are utilized to measure the optimality of the solutions [14]:

‖rkp‖ = ‖C∆tk − ptk + pl‖, ‖rkq ‖ = ‖D∆tk − qtk + ql‖

‖skp‖ = ‖C(∆tk −∆tk−1)‖, ‖skq‖ = ‖D(∆tk −∆tk−1)‖.

and, for given load and ambient conditions, the algorithm terminates when quantities above are smaller than

5× 10−4; for the dual-subgradient method, only the first 300 iterations are plotted.
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Figure 4.2: IEEE 37-node feeder.
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Figure 4.4: Convergence of the dual-subgradient method as well as the ADMM-based algorithm. For the
latter, both Option 1 and Option 2 are tested. A first-order system is used to emulate the behavior of the RES
system. As a benchmark, CVX [1] is utilized to obtain the optimal solution of (4.12). Figure 4.3c illustrates
the trade-off between the total number of iterations and the number of gradient steps used for each iteration

Fig. 4.4 shows that the ADMM-based algorithm (with either Option 1 or Option 2) converges to the

optimal objective value. Dual-subgradient methods (e.g., [59]) are also convergent, but they require a sig-

nificantly higher number of iterations. Each iterations of the dual-subgradient method and of the ADMM-

Option 1 take a similar computational time since they both solve the ∆-subproblem exactly. Notice that

compared to Option 1, Option 2 requires more iterations to converge; however, each iteration is computa-

tionally lighter for Option 2. This sets a natural trade-off between convergence and computational complex-

ity. To further highlight this point, Figure 4.3c compares a few different scenarios in which multiple gradient

steps (4.19b) are performed in each iteration. Clearly, the higher is the amount of gradient steps performed

in each iteration, the fewer is the total iterations are required.

Next, adaptability of the proposed ADMM-based strategy to changing irradiance conditions is tested;

particularly, assume the following changes in the available powers {P av
i } of the PV systems:
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Figure 4.6: Tracking performance of the proposed algorithm in case of changing operational conditions.
Changes in the solar irradiance are presumed at k = 400, 600, 800.

P av(k) = [44, 134, 42, 100, 136, 80]>kW, k ∈ [1, 400]

P av(k) = [50, 160, 48, 110, 170, 90]>kW, k ∈ [400, 600]

P av(k) = [62, 184, 58, 135, 184, 108]>kW, k ∈ [600, 800]

P av(k) = [52, 168, 50, 114, 172, 94]>kW, k ∈ [800, 1200].

Note that the changes are presupposed at iterations 400, 600 and 800. It can be seen from Fig. 4.6 that the

inverter outputs yi[tk] = [Pi(t), Qi(t)]
> quickly converge to the new optimal setpoints within each interval.

To assess whether the proposed scheme enforces voltage regulation, consider a setting where the PV

capacities {Si}i∈ND and available powers P av are five time higher than the initial setting. In this case, the

feeder would incur overvoltage conditions when the PV systems operate at the business-as-usual setpoint

(P av, 0). Instead, Fig. 4.7 demonstrates that the ADMM-based controller maintains the voltage magnitude

within the limits.
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Figure 4.7: Example of trajectory for the voltage magnitude when the PV systems are controlled using the

proposed ADMM-based algorithm.

Finally, the ADMM-based Algorithm 3 is tested in the presence of constant error; particularly, it is

assumed that (ηk)2 = ‖ytki − utki ‖2 = 0.002. The following objective functions are utilized:

H(∆) =10×
2N∑
i=1

(∆(i)− 1)2, (4.31)

Gi(Pi, Qi) =ai(P
av
i − Pi)2 + bi(P

av
i − Pi)

+ ciQ
2
i + di|Qi|. (4.32)
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Figure 4.8: Convergence of ADMM with constant error in RES outputs. The two curves are generated by

running (4.19) to solve problem (4.12), and by running Algorithm 3 to solve problem (4.26), respectively.
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Figure 4.10: Voltage profiles when di is changing every second.

where the parameters ai, bi, ci, and bi are set as in the previous experiments. In Figure 4.8 it can be

seen that the approximation error is negligible and, as established in Theorem 4, the algorithm converges

to a neighborhood of the optimal value. In the figure, the trajectory ”solving problem (12)” is used for

comparison purposes, and it is generated by running (4.19) to solve the original problem (4.12).

The performance of ADMM-based algorithms depends on the tuning parameter ρ. For Option 1, we use

the adaptive stepsize strategy explained in [14] to improve the convergence. In the Option 2), ρ is chosen

empirically and it is set to 102.

The theoretical results outlined in the paper are applicable to the case where the non-controllable loads

di are slow time-varying or constant. While extending the theoretical claims to the case of time-varying

loads, constraints, and cost functions is the subject of future endeavors, in this section we provide some

numerical results to show how the proposed ADMM-based algorithm can cope with time-varying problem

parameters. To this end, we consider the simulation setting utilized in [81], where the the loads di and

the maximum active powers available from the PV inverters are changing on a second basis; see [81] for a

complete description of the dataset. Figure 4.9a reports the evolution of the voltage magnitude over time

when CVX [1] is utilized to solve problem (4.12); to obtain reasonable simulation times, (4.12) was solved

with CVX only every 1000 seconds. As for Algorithm 3, three iterations are performed every second. Figure

4.9b illustrates the trajectory of the voltage magnitudes; it can be seen that the ADMM-based method can

successfully enforce voltage regulation and tracks the benchmark trajectories.
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4.5 Proof of Lemma 1

Proof. Define first the following:

D(ŵk) =


ûk − PY{ûk − [∇G(ûk) + λ̂

k
]}

∆̂k − PV{∆̂k − [∇H(∆̂k)−Φ>λ̂
k
]}

Φ∆̂k − ûk + d


and notice that the optimality condition on ∆̂k and ûk imply the following:

∆̂k = PV{∆̂k − [∇H(∆̂k)−Φ>λ̂
k−1

+ ρΦ>(Φ∆̂k − ûk + d)]}

= PV{∆̂k − [∇H(∆̂k)−Φ>λ̂
k
]}

ûk = PY{ûk − [∇G(ûk) + λ̂
k

+ ρΦ(∆k−1 − ∆̂k)]}.

Combining the above equalities and using nonexpansive property of the projection operator, it follows that:

∥∥∥D(ŵk)
∥∥∥ ≤

∥∥∥∥∥∥∥∥∥∥
ρΦ(∆̂k −∆k−1)

0

Φ∆k−1 − ûk + d + Φ∆̂k −Φ∆k−1

∥∥∥∥∥∥∥∥∥∥
≤ (ρ+ 1)

∥∥∥Φ(∆̂k −∆k−1)
∥∥∥+

∥∥∥Φ∆k−1 − ûk + d
∥∥∥

Thus, one can conclude that:

∥∥∥D(ŵk)
∥∥∥2
≤ τ

∥∥∥Φ∆k−1 − ûk + d
∥∥∥2

ρI
,

where τ > 0 is some constant. �

4.6 Proof of Lemma 2

Proof. Based on the following equality

‖a + b‖2 = ‖a‖2 − ‖b‖2 + 2(a + b)>b (4.33)
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we have that:

∥∥∥ŵk −w∗
∥∥∥2

H̃
=
∥∥∥∆̂k −∆∗

∥∥∥2

LI
+
∥∥∥λ̂k − λ∗∥∥∥2

1
ρ
I

=
∥∥∥∆̂k −∆k−1+ ∆k−1−∆∗

∥∥∥2

LI
+
∥∥∥λ̂k − λk−1+ λk−1−λ∗

∥∥∥2

1
ρ
I

(4.33)
=
∥∥∥∆k−1−∆∗

∥∥∥2

LI
+
∥∥∥λk−1 −λ∗

∥∥∥2

1
ρ
I
−
∥∥∥∆̂k −∆k−1

∥∥∥2

LI

−
∥∥∥λ̂k − λk−1

∥∥∥2

1
ρ
I

+ 2L(∆̂k −∆∗)>(∆̂k −∆k−1)

+
2

ρ
(λ̂

k − λ∗)>(λ̂
k − λk−1). (4.34)

We then leverage the convergence results for the standard ADMM, and utilize the optimality condition for

∆∗ and ∆̂k as well as the convexity of H(·) and G(·) to bound the cross term in (4.34). For ∀∆ ∈ V and

∀u ∈ Y:

H(∆)−H(∆̂k)−(∆− ∆̂k)>(Φ>λ̂
k
+ ρΦ>(Φ∆̂k−Φ∆k−1))

≥ L(∆− ∆̂k)>(∆k−1 − ∆̂k)− γ

2

∥∥∥∆k − ∆̂k
∥∥∥2

H(∆)−H(∆∗)− (∆−∆∗)>(Φ>λ∗) ≥ 0

G(u)−G(ûk) + (u− ûk)>
[
λ̂
k − ρ(Φ∆k−1−Φ∆̂k)

]
≥ 0

G(u)−G(u∗) + (u− u∗)>λ∗ ≥ 0.

Using the identification ∆ = ∆∗ and ∆ = ∆̂k for the optimality condition of ∆∗ and ∆̂k, respectively,

and doing the same for u∗ and ûk, one can obtain the following inequalities:

(∆̂k −∆∗)>(Φ>(λ̂
k − λ∗) + ρΦ>Φ(∆̂k −∆k−1))

≥L(∆∗ − ∆̂k)>(∆k−1 − ∆̂k)− γ

2

∥∥∥∆k − ∆̂k
∥∥∥2

(4.35)

(u∗ − ûk)>(λ∗ − λ̂k)

≤ρ(Φ(∆̂k −∆k−1))>(u∗ − ûk). (4.36)
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thus, adding up (4.35)-(4.36), one has that:

(λ̂
k − λ∗)>(Φ∆∗ −Φ∆̂k + ûk − u∗)

+ (∆∗ − ∆̂k)>(ρΦ>Φ(∆̂k −∆k−1))

≤γ
2

∥∥∥∆k−1 − ∆̂k
∥∥∥2
− L(∆∗ − ∆̂k)>(∆k−1 − ∆̂k)

+ ρ(Φ(∆̂k −∆))>(u∗ − ûk).

Using the dual update of (4.19) in the above inequality, one obtains:

1

ρ
(λ̂

k − λk−1)(λ̂
k − λ∗)

≤γ
2

∥∥∥∆k−1 − ∆̂k
∥∥∥2

+ ρ(Φ(∆̂k −∆k−1))>(u∗ − ûk+1)

+ (∆̂k −∆∗)>(LI− ρΦ>Φ)(∆k−1 − ∆̂k).

Now we can bound the cross term of (4.34) as follows:

2L(∆̂k−∆∗)>(∆̂k−∆k−1) +
2

ρ
(λ̂

k − λ∗)>(λ̂k − λk−1)

≤2L(∆̂k −∆∗)>(∆̂k −∆k−1) + γ
∥∥∥∆k−1 − ∆̂k

∥∥∥2

+ (∆̂k −∆∗)>(2LI− 2ρΦ>Φ)(∆k−1 − ∆̂k)

+ 2ρ(Φ(∆̂k −∆k−1))>(u∗ − ûk)

=γ
∥∥∥∆k−1−∆̂k

∥∥∥2
+(∆̂k −∆∗)>(2ρΦ>Φ)(∆̂k −∆k−1)

+ 2ρ(Φ(∆̂k −∆k−1))>(u∗ − ûk)

=γ
∥∥∥∆k−1 − ∆̂k

∥∥∥2
+2ρ(Φ(∆̂k −∆k−1))>(Φ(∆̂k −∆∗)

+ u∗ − ûk)

=γ
∥∥∥∆k−1− ∆̂k

∥∥∥2
+ 2ρ(Φ(∆̂k−∆k−1))>(Φ∆̂k−ûk + d)

=γ
∥∥∥∆k−1− ∆̂k

∥∥∥2
− 2(Φ(∆̂k−∆k−1))>(λ̂

k− λk−1). (4.37)
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Combine (4.34)-(4.37) and define Ψ := (L− γ)I− ρΦ>Φ. Then,
∥∥ŵk −w∗

∥∥2

H̃
can be bounded as shown

next:

∥∥∥ŵk −w∗
∥∥∥2

H̃
≤
∥∥∥wk−1 −w∗

∥∥∥2

H̃
−
∥∥∥∆̂k −∆k−1

∥∥∥2

LI

−
∥∥∥λ̂k − λk−1

∥∥∥2

1
ρ
I

+ γ
∥∥∥∆k−1 − ∆̂k

∥∥∥2

− 2(Φ(∆̂k−∆k−1))>(λ̂
k− λk−1)

=
∥∥∥wk−1 −w∗

∥∥∥2

H̃
−
∥∥∥∆̂k −∆k−1

∥∥∥2

ρΦ>Φ
−
∥∥∥λ̂k − λk−1

∥∥∥2

1
ρ
I

− 2(Φ(∆̂k−∆k−1))>(λ̂
k− λk−1)−

∥∥∥∆̂k−∆k−1
∥∥∥2

Ψ

=
∥∥∥wk−1 −w∗

∥∥∥2

H̃
−
∥∥∥λ̂k − λk−1 + ρΦ(∆̂k −∆k−1)

∥∥∥2

1
ρ
I

−
∥∥∥∆̂k−∆k−1

∥∥∥2

Ψ

=
∥∥∥wk−1 −w∗

∥∥∥2

H̃
−
∥∥∥∆̂k−∆k−1

∥∥∥2

Ψ

−
∥∥∥−ρ(Φ∆̂k − ûk + d) + ρΦ(∆̂k −∆k−1)

∥∥∥2

1
ρ
I

=
∥∥∥wk−1 −w∗

∥∥∥2

H̃
−
∥∥∥Φ∆k−1 − ûk + d

∥∥∥2

ρI

−
∥∥∥∆̂k−∆k−1

∥∥∥2

Ψ
(4.38)

�

4.7 Proof of Lemma 3

Proof. It can be readily shown that

‖wtk −w∗‖2
H̃

= ‖wtk − ŵtk + ŵtk −w∗‖2
H̃

= ‖wtk − ŵtk‖2
H̃

+ ‖ŵtk −w∗‖2
H̃

+ 2‖wtk − ŵtk‖H̃ · ‖ŵ
tk −w∗‖H̃. (4.39)
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On the other hand, from Lemma 3 it follows that∥∥wtk −w∗
∥∥

H̃
≤
∥∥ŵtk −w∗

∥∥
H̃

+ ‖wtk − ŵtk‖H̃

≤
∥∥wtk−1 −w∗

∥∥
H̃

+ ‖wtk − ŵtk‖H̃.

According to Hölder’s inequality and the fact that there are errors both in ∆ and λ updates, we have

‖wtk − ŵtk‖2
H̃

=

∥∥∥∥∥∥∥∥∥∥


0

∆tk − ∆̂tk

λtk − λ̂tk


∥∥∥∥∥∥∥∥∥∥

2

H̃

=

∥∥∥∥∥∥∥∥∥∥


0

Φ>(utk − ytk)

ρ(utk − ytk)


∥∥∥∥∥∥∥∥∥∥

2

H̃

≤ L(ηtk)2‖Φ>‖2 + ρ(ηtk)2. (4.40)

Combining the above two inequalities we can derive∥∥wtk−w∗
∥∥

H̃
≤
∥∥wtk−1−w∗

∥∥
H̃

+ηtk
√
L‖Φ>‖2 + ρ. (4.41)

Summing both sides over k, we obtain

∥∥wtk −w∗
∥∥

H̃
≤

k∑
i=1

σηti (4.42)

where σ :=
√
L‖Φ>‖2 + ρ. The above inequality implies that if

∑∞
k=1 η

tk < +∞, then ‖ŵtk−w∗‖H̃ ≤ c,

where c is some constant. Consequently, combining (4.39) and (4.42) one can obtain the following:∥∥wtk −w∗
∥∥2

H̃
≤
∥∥ŵtk −w∗

∥∥2

H̃
+ (σηtk)2 + 2σηtkc. (4.43)

Combining (4.43) with Lemma 3 and Assumption 4, it follows that:∥∥wtk −w∗
∥∥2

H̃
≤
∥∥ŵtk −w∗

∥∥2

H̃
+ (σηk)2 + 2σηtkc

≤
∥∥wtk−1 −w∗

∥∥2

H̃
−
∥∥Φ∆tk−1 − ûtk + d

∥∥2

ρI

+ (σηtk)2 + 2σηtkc. (4.44)

Summing (4.44) from 1 to k, we obtain:

∥∥wtk−w∗
∥∥2

H̃
≤
∥∥w0−w∗

∥∥2

H̃
−

k∑
i=1

∥∥Φ∆ti−1− ûti + d
∥∥2

ρI

+

k∑
i=1

(σηti)2 + 2

k∑
i=1

σηtic. (4.45)



www.manaraa.com

75

Further, letting k → ∞ for (4.45), it is clear that
∥∥wt∞−w∗

∥∥2

H̃
and

∥∥w0−w∗
∥∥2

H̃
are finite. On the other

hand, with Assumption 2 we know that
∑∞

i=1(σηti)2 and 2
∑∞

i=1 ση
tic are also finite. Then one can show

that
+∞∑
i=1

∥∥Φ∆ti−1 − ûti + d
∥∥2

ρI
< +∞,

which leads to the following result:

lim
k→∞

∥∥Φ∆tk−1 − ûtk + d
∥∥2

ρI
= 0. (4.46)

�

4.8 Proof of Theorem 1

Proof. From Lemma 2 and (4.46), it follows that

lim
k→∞

D(ŵk) = 0 .

On the other hand, from Assumption 4 and (4.45), one has that {wk} is bounded and so is {ŵk}. Then,

there exists a closed and bounded set S such that {ŵk} ⊂ S, lim
k→∞

‖ŵk −wk‖ = 0. It remains to show that

lim
k→∞

dist(ŵk,W ∗) = 0.

Suppose that lim
k→∞

dist(ŵk,W ∗) 6= 0. Then, there exists a δ > 0 such that lim sup
k→∞

dist(ŵk,W ∗) =

δ > 0. Further,

{ŵk} ⊂ S ∩ {z|dist(z,W ∗) ≥ δ

2
} ∆

= S1,

and, since S1∩W ∗ 6= ∅, thenD(z) 6= 0 for many z ∈ S1; that is, min
z∈S
{‖D(z)‖2} = ε > 0. This contradicts

the fact that {ŵk} ⊂ S and lim
k→∞

‖D(ŵk)‖ = 0.

Since lim
k→∞

dist(wk,W ∗) = 0, every subsequence of {wk} converges to an optimal solution. Without

loss of generality, let w∞ be a cluster point of {wk}, and {wkj} be the subsequence of {wk}, which

converges to w∞. For w∞ ∈W ∗ and for all ε > 0, there exists an integer l such that:∥∥∥wkl −w∞
∥∥∥2

H̃
<
ε2

3
,

∞∑
i=kl

σηi <
ε2

6c
,

∞∑
i=kl

(σηi)
2 <

ε2

3
.
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By (4.44), we have that ∀k ≥ kl + 1

∥∥∥wk −w∞
∥∥∥2

H̃
≤
∥∥∥wkl −w∞

∥∥∥2

H̃
+

k−1∑
i=kl

(σηi)
2 +

k−1∑
i=kl

2cσηi

−
k−1∑
i=kl

∥∥Φ∆i−1 − ûi + d
∥∥2

ρI

≤ ε2

3
+
ε2

3
+
ε2

3
= ε2

Hence, ‖wk −w∞‖H̃ → 0, i.e. wk → w∞. �

4.9 Proof of Theorem 2

Proof. Given underlying assumptions, one can always find a θ = 1−δ
r−1+δ > 0 such that

(1− δ)(1 +
1

θ
) = r < 1,

where r is some constant. Since
∥∥yk − uk

∥∥ ≤ ε, then it holds that

∥∥∥wk − ŵk
∥∥∥

H̃
≤ ε
√
L‖Φ>‖2 + ρ. (4.47)

For simplicity, define β = ε
√
L‖Φ>‖2 + ρ. From Corollary 1, we have the following inequality:

∥∥∥ŵk −w∗
∥∥∥2

H̃
≤ (1− δ)(1 + θ)

∥∥∥wk−1 − ŵk−1
∥∥∥2

H̃

+ (1− δ)(1 +
1

θ
)
∥∥∥ŵk−1 −w∗

∥∥∥2

H̃
−
∥∥∥ŵk −wk−1

∥∥∥2

H̃

and, by applying the same iteration to ‖ŵk−1 −w∗‖2
H̃

, we obtain:
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∥∥∥ŵk −w∗
∥∥∥2

H̃
≤ (1− δ)(1 + θ)β2 + r

∥∥∥ŵk−1 −w∗
∥∥∥2

H̃

−
∥∥∥ŵk −wk−1

∥∥∥2

H̃

≤ (1− δ)(1 + θ)β2 + r[(1− δ)(1 + θ)β2

+ r
∥∥∥ŵk−2 −w∗

∥∥∥2

H̃
−
∥∥∥ŵk−1 −wk−2

∥∥∥2

H̃
]

−
∥∥∥ŵk −wk−1

∥∥∥2

H̃

. . .

≤ (1− δ)(1 + θ)β2
k−1∑
i=0

ri

+ rk
∥∥∥ŵk−2 −w∗

∥∥∥2

H̃
.

Letting k →∞, one has that lim
k→∞

k−1∑
i=0

ri = r
1−r is a constant and

rk
∥∥∥ŵk−2 −w∗

∥∥∥2

H̃
→ 0 .

It thus follow that:

‖ŵ∞ −w∗‖2
H̃
≤ (1− δ)(1 + θ)β2 × r

1− r

Let ξ2 = (1− δ)(1 + θ)β2 × r
1−r . Since ‖ŵk −wk‖2

H̃
≤ β2 is a constant, it follows that

‖w∞ −w∗‖2
H̃

=‖w∞ − ŵ∞ + ŵ∞ −w∗‖2
H̃

=‖w∞ − ŵ∞‖2
H̃

+ ‖ŵ∞ −w∗‖2
H̃

+ 2‖w∞ − ŵ∞‖H̃ · ‖ŵ
∞ −w∗‖H̃

≤β2 + ξ2 + 2βξ = (β + ξ)2

�



www.manaraa.com

78

CHAPTER 5. DSPD: A DOUBLE STOCHASTIC PRIMAL-DUAL ALGORITHM FOR

TRAINING TASK

5.1 Introduction

In this chapter, we introduce a novel stochastic primal-dual method for training neural networks. Previ-

ous chapters all focus on the tracking ability of our time-varying algorithm, where problem parameters are

changing in real time and the goal is to track multiple optimal solutions. In this chapter we formulate the

training problem into a related time-varying optimization problem, where each time we sample part of the

data as problem parameters. The goal, however, is to learn one solution that can fit all problem parameters.

This is a fundamental difference of this chapter.

Deep neural networks (DNNs) have been successfully implemented in many applications in recent years

[26]. Owning to the availability of powerful CPU and GPUs, we are able to utilize big datasets to train

DNNs as function approximators. A classic feed-forward deep neural network is a hierarchical mapping

from inputs to outputs, where each layer consists of linear operators and nonlinear activation functions.

Given enough neurons, such a nested system can have arbitrary accuracy in function approximation [82].

However, the nested structure also poses significant challenges in training as it involves minimizing a highly

non-convex and possibly nonsmooth loss function. Multiple local optima, saddle points or even flat regions

are likely to exist and jeopardize the whole training process [83, 84].

Related Works: Recently, a new line of work focuses on designing training schemes that decouple the

connections between DNN layers by introducing auxiliary variables. It is shown that these schemes can be

used together with the techniques such as normalization and residual nets to alleviate the vanishing gradient

problem. Reference [32] proposes to decouple the layers using auxiliary variables. This resulting equality

constrained problem is then solved by penalizing the constraints to the objective and performing alternating

updating between variables. The work [33] follows similar ideas and proposes to use alternating direction

method of multipliers (ADMM) to solve the resulting equality constrained problem. The authors show that
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ADMM has a better scalability than SGD in terms of parallelizing over multiple CPU cores. However,

the algorithm suffers from significant drawback, in that the final optimized variables can be inconsistent

because the relaxed constraints are never enforced; Further, it is a batch algorithm which requires the access

of all data points each time, and there is no theoretical guarantee that the algorithm is convergent. It has

been stated in [33] that whether these efficient primal-dual training scheme are convergent has been an open

problem. Another ADMM-based algorithm is proposed in [34] to train DNNs for supervised learning of

hash codes, where only empirical convergence is discussed.

Besides primal-dual type methods, researchers have also discovered that block coordinate descent (BCD)

can further boost the performance of SGD. In [35, 85] BCD type methods are shown to be superior over

SGD-based algorithms under certain settings. A proximal BCD algorithm was proposed in [86], and global

convergence results are provided by assuming certain Kurdyka-Łojasiewicz (KL) property. All the afore-

mentioned works are batch algorithms, meaning each gradient evaluation step requires one pass to the entire

dataset, which is time consuming, memory inefficient, thus are not realistic in practice. To the best of our

knowledge, there is no stochastic primal-dual algorithm or stochastic coordinate descent algorithm that have

been developed to train neural networks in the literature. Convergence of such stochastic algorithm also

remains unknown. In this paper, we will address these issues.

Our Contributions: Considering all the works mentioned above, we address the following research ques-

tion: Can we rigorously develop algorithms that do not require backpropagation, and are able to effectively

and systematically access the gradient information for deeper layers, while still being able to leverage key

features of existing training schemes such as stochastic access of the data, incremental updates of the vari-

ables? Towards this end, the main contributions of this paper are listed below:

•We propose a novel training framework called double stochastic primal-dual (DSPD) method. The updates

of this algorithm are computationally cheap due to the fact that it is based on stochastically chosen subsets

of parameters and data points.

• Under suitable constraint qualifications (which are commonly used in optimization literature), we prove

that the proposed algorithm can converge to the set of stationary solutions with probability 1;

•We conduct experiments to demonstrate that our stochastic algorithm is able to train neural networks.
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Note that by no means we are claiming our algorithm is superior over SGD-based methods or we can

solve vanishing gradient problem. In fact, SGD has been improved so many times over the years that its

performance is much better than the original version. Nevertheless the SGD family has its own limitation

such as in dealing with vanishing gradient, and in exploring network structures. This work provides a

new perspective as to how to remove one key requirement for SGD training – the need to perform back

propagation.

5.2 Problem Formulation

Consider a feed-forward fully connected neural network with L + 1 layers, for each layer l we define

weight and bias as Wl and bl, respectively. Define the entire dataset as φ, assume that we have n data

points, and for each data point i ∈ φ the input for layer l is Wlxl−1,i + bl, while the output is each layer

as xl,i = σ(Wlxl−1,i + bl), l = 1, . . . , L, where σ(·) is some activation function. Suppose di represents

the label of data point i for all i ∈ φ. Let us define W := {Wl}Ll=1. The goal is to find parameter W that

optimizes an empirical loss function denoted by `(·) over training data sets:

min
W

n∑
i=1

`(xL,i({W,b}),di). (5.1)

Gradient-based methods solve (5.1) by updating all weights jointly through one stochastic gradient step.

Due to the coupling of weights from different layers, gradients from shallower layers are computed based

on products of weight matrices and derivatives of activation functions from deeper layers. If at some points

the eigenvalues of weight matrices are very small or derivatives of activation functions are close to 0, the

resulting gradients will become small therefore “non-informative”, hence the name “vanishing” gradient.

This phenomenon becomes even worse when the network involves more hidden layers, and consequently

the training can be very slow.

Since vanishing gradient comes from the nested structure of DNN, one would find it natural to consider

decomposing the connections between layers. Following [33], we introduce auxiliary variables yl,i for

each layer l and data point i. See Figure 5.1 for network structure and explanation. Problem (5.1) can be
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Figure 5.1: SGD methods backprop the error from deep layers to shallow layers in the form of gradients of a
single loss function `(·) and then update weights jointly. We introduce auxiliary variables yl to decompose
the coupling term xl = σ(Wlxl−1 +bl) into xl = f(yl) and yl = Wlxl−1 +bl. After relaxing these terms
and penalizing them to the objective, the gradients of all variables can be directly accessed without using
backprop.

reformulated as the following equality constrained optimization problem:

min
xl,i,yl,i,Wl,bl

n∑
i=1

`(yL,i,di) (5.2)

s.t. yl,i = Wlxl−1,i + bl, ∀i ∈ φ, l = 1, 2, . . . , L;

xl,i = σ(yl.i), ∀i ∈ φ, l = 1, 2, . . . , L− 1,

where we do not have activation function for last layer. Instead of only optimizing over weight matrices, we

treat xl,i,yl,i,Wl, bl, l = 1, · · · , L, i ∈ φ as variables. In the following section we introduce the proposed

algorithm to efficiently optimize (5.2).

5.3 Stochastic Primal-Dual Decomposition Algorithm

First we provide a brief introduction for a number of key ingredients of the proposed algorithm.

Stochastic Variance-Reduced Methods: In SGD the cost of evaluating the gradient is significantly

cheaper than GD algorithm. However, at the same time the estimation might have a high variance. Variance-
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reduced methods utilize past stochastic gradient information to reduce the variance of the gradient estimation

while still maintaining cheap gradient evaluation [87–89]. It is proved that this algorithm converges to the

set of first-order stationary solutions under specific conditions [90–92].

Stochastic Block Coordinate Descent: For high-dimensional problems, it is often expensive to com-

pute full gradients of all variables in a single iteration. Therefore it is usually computationally beneficial to

stochastically pick a subset of variables to update [93].

Double-Stochastic Block Coordinate Descent: A natural algorithm to deal with the problem when

both data size and variable number are large is to combine variance reduction and BCD together; for example

see the S2CD algorithm proposed for convex problems [94].

Our Proposed Algorithm. Now we present our algorithm for the reformulated problem (5.2). First let us

define the augmented Lagrangian (AL) function as follows:

L(xl,i,yl,i, {Wl; bl};λl,i,γl,i) =
n∑
i=1

`(yL,i,di) +
n∑
i=1

L∑
l=1

ρl,i
2

∥∥∥∥yl,i −Wlxl−1,i − bl +
λl,i
ρl,i

∥∥∥∥2

+

n∑
i=1

L−1∑
l=1

βl,i
2

∥∥∥∥xl,i − σ(yl,i) +
γl,i
βl,i

∥∥∥∥2

(5.3)

where λl,i and γl,i are Lagrangian multipliers and ρl,i > 0 and βl,i > 0 are penalty parameters. For notation

simplicity, we define Ŵl = {Wl; bl} and x̂l−1,i = {xl−1,i; 1} and

qi(Ŵl) =
L∑
l=1

ρl,i
2

∥∥∥∥yl,i − Ŵlx̂l−1,i +
λl,i
ρl,i

∥∥∥∥2

.

Our algorithm contains two loops. The inner loop minimizes the AL function with respect to the primal

variables i.e. (x,y, Ŵ ) using certain variance reduced double-stochastic BCD algorithm. Notice that this

primal problem is in a finite-sum format over data point and is nonconvex, therefore it is quite challeng-

ing. There have been some efforts to tackle this problem in nonconvex setting. See for example [90–92].

However, all of these methods need to update all coordinates in each iteration, where this is computationally

very prohibitive in the case of problem (5.3) with too many parameters. Our algorithm randomly picks one

data point and one coordinate, and update using the stochastic variance-reduced algorithm, while keeping

other variables fixed. For notation simplicity, we group {xl,i,yl,i, Ŵl} over coordinates as {xi,yi, Ŵ }. In
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order to track the summation of gradients we define an intermediate variable V̂j for j = 1, . . . , n (one for

each data point). We make the following assignments: V̂ k
j = Ŵ k if data point j is selected at iteration

k, otherwise V̂ k
j = V̂ k−1

j for j ∈ {1, . . . , n}. Up till now we have introduced one iteration of primal

update. Unlike ADMM we choose to perform primal updates for several iterations until it reaches some

accuracy, which we define as S. See Algorithm 3 for detailed steps. A specific stopping criteria is given in

the convergence analysis section.

Algorithm 3 Double-stochastic-BCD({xk,yk, Ŵ k})

1: Initialize k = 0,
∂qi(Ŵ

0
l )

∂Ŵ 0
l

= 0, i = 1, . . . , n, l = 1, . . . , L

2: while stopping criteria S is not satisfied do
3: randomly pick j ∈ {1, . . . , n} with probability pj
4: randomly pick p ∈ {1, 2, 3}
5: if p = 1 then

6: Ŵ k+1 = Ŵ k − β
(∑

i
∂qi(V̂

k−1
i )

∂Ŵ k−1
− ∂qj(V̂

k−1
i )

∂Ŵ k−1
+

∂qj(Ŵ
k)

∂Ŵ k

)
7: xk+1 = xk, yk+1 = yk, V̂ k

j = Ŵ k, V̂ k
i = V̂ k−1

i , for i 6= j

8: end if
9: if p = 2 then

10: xk+1
j = xkj − β ∂L

∂xkj
, xk+1

jr
= xkjr , j r 6= j

11: yk+1 = yk, Ŵ k+1 = Ŵ k, V̂ k
i = V̂ k−1

i , for i ∈ {1, . . . , n}
12: end if
13: if p = 3 then
14: yk+1

j = ykj − β ∂L
∂ykj

, yk+1
jr

= ykjr , jr 6= j

15: xk+1 = xk, Ŵ k+1 = Ŵ k, V̂ k
i = V̂ k−1

i , for i ∈ {1, . . . , n}
16: end if
17: k = k + 1

18: end while
19: return {xk,yk, Ŵ k}

Next we present the outer loop which performs either augmented Lagrangian method or penalty method,

depending on the size of the constraint violation. For simplicity we denote equality constraints in problem

(5.2) as h(xl,i,yl,i, Ŵl) = 0. The algorithm starts outer loop by checking the following condition:

||h(xrl,i,y
r
l,i, Ŵ

r
l )||∞ ≤ δr, (5.4)

where δr > 0 is a positive constant which measures the equality constraint violation and δr → 0 as r →∞.

If (5.4) is satisfied, we update the dual variables (λl,i,γl,i) by performing a dual ascent step while keeping
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Algorithm 4 Stochastic Primal-Dual Decomposition (DSPD)

1: Initialize x0
l,j ,y

0
l,j , Ŵ

0
l ,λ

0
l,j ,γ

0
l,j , α > 1

2: repeat
3: {xr,yr, Ŵ r} = Double-stochastic-BCD({xr−1,yr−1, Ŵ r−1})
4: for i = 1, . . . , n do
5: for l = 1, . . . , L do
6: if ‖h(xrl,i,y

r
l,i, Ŵ

r
l )‖∞ ≤ δr then

7:

(
λr+1
l,i

γr+1
l,i

)
=

(
λrl,i
γrl,i

)
+

(
ρl,i
βl,i

)
h(xrl,i,y

r
l,i, Ŵ

r
l )

8: else
9: ρl,i = ρl,i ∗ α, βl,i = βl,i ∗ α

10: end if
11: end for
12: end for
13: r = r + 1

14: until some termination criterion is met

(ρl,i, βl,i) unchanged. Otherwise, we increase the penalty parameter (ρl,i, βl,i) while the dual variables

(λl,i,γl,i) remain fixed. See Algorithm 4 for detail updates.

It is worth mentioning that if performing the dual ascent update without increasing the penalty, the

method becomes the classical augmented Lagrangian method, and it may not converge for non-convex

problems [95]. On the other hand, is it also known that using penalty method alone could be very inefficient

as it requires the penalty parameters to go to infinity [95]. Therefore, we propose to switch between dual

ascent step and penalty method is trying to find a proper penalty parameter to ensure augmented Lagrangian

method is convergent.

5.4 Convergence Analysis

For simplicity of presentation, we consider the following general problem:

min
z

∑
i

gi(z), s.t. h(z) = 0, (5.5)

where gi(z)’s are continuously differentiable; h(z) = {hi(zi)}i∈φ; z has m block variables. Problem

(5.2) is a special case of (5.5) in the following sense: i) First, the variables x,y, Ŵ can be viewed as three

blocks consisting of z; ii) For a fixed i, we can specialize gi(z) as `i(W ,xi,yi) which is the component
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loss function in (5.2). It is important to note that in our problem (5.2), each xi,yi is only contained in the

ith loss function, while problem (5.5) is slightly more general since we do not explicitly write out such a

dependency. iii) Each hi(zi) corresponds to equality constraints for each data point i. Next, we define the

augmented Lagrangian function for (5.5) as follows:

L(z;µ) =

n∑
i=1

gi(z) +

n∑
i=1

κi
2

∥∥∥∥hi(z) +
µi
κi

∥∥∥∥2

, (5.6)

where the µi is the dual variable associated with the constraint hi(z) = 0 and κi > 0 is the penalty

parameter. In the primal problem of DSPD the dual variable µ is held fixed. So for further simplicity let us

define fi(z) := gi(z) + κi
2

∥∥∥hi(z) +
µri
κi

∥∥∥2
. Then the primal problem is indeed minimizing the finite-sum

function f(z) :=
∑n

i=1 fi(z) over variable z. Furthermore, let us define the following gradients:

Φ(z) =
n∑
i=1

∇fi(z), Ψ(z,µ) =

Φ(z)

h(z)

 , (5.7)

where Φ(z) is gradient for the primal problem and Ψ(z,µ) is gradient for the AL function (5.6). Also we

define an intermediate variable yi,j as (5.17), then Algorithm 1 can be compactly and equivalently written

as follows.

Algorithm 5 Double-stochastic-BCD(zk)

1: Initialize k = 0, ∂fi(z
0)

∂Ŵ 0
l

= 0, i = 1, . . . , n, l = 1, . . . , L

2: while stopping criteria S is not satisfied do

3: randomly pick ik ∈ {1, . . . , n} with probability pi

4: randomly pick jk ∈ {1, . . . ,m}

5: zk+1
j =


zkj − β

(
n∑
i=1

∂fi(y
k−1
ij )

∂zj
+ 1

pik

(∂fik (zk)

∂zj
−

∂fik (yk−1
ikj

)

∂zj

))
, j = jk

zkj , o.w.,

6: k = k + 1

7: end while

8: return zk

Before we go into details of convergence analysis, we make the following assumptions:

Assumptions A
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A1. The gradient∇fi(z) is Lipschitz continuous, i.e. there exists Li > 0 such that

‖∇fi(z1)−∇fi(z2)‖ ≤ Li‖z1 − z2‖, ∀ z1, z2 ∈ dom(fi), ∀ i. (5.8)

A2. For all i = 1, 2, · · · , n, and for all j = 1, 2, · · · ,m, partial gradient of function fi with respect to

coordinate j is Lipschitz continuous i.e. there exists Lij > 0 such that∥∥∥∥∂fi(z1)

∂zj
− ∂fi(z2)

∂zj

∥∥∥∥ ≤ Lij‖z1 − z2‖, ∀ z1, z2 ∈ dom(fi). (5.9)

A3. The function f(z) :=
∑n

i=1 fi(z) is lower bounded.

We also assume certain constraint qualification condition known as the Robinson’s condition [96]:

Definition 1. Rewrite the constraints in (5.5) as h(z) ∈ Z0, where Z0 = {0}. Robinson’s condition is

satisfied at z̄ for problem (5.5) if the following holds

{∇h(z̄)d : d ∈ TZ0(h(z̄))} = Rn, (5.10)

where TZ0(z) denotes the tangent cone of Z0 at h(z), n is the cardinality of φ.

From [96] it is known that Robinson’s condition is equivalent to metric regularity, which states that

distance of perturbed point ẑ to a solution z̄ of the perturbed system is proportional to the violation of

constraints. From this intuition we can see that the switching condition between AL method and penalty

method makes perfect sense. As long as we can have constraint violation small, we should be able to achieve

a solution that is close to stationary point. It is worth mentioning that using regularity conditions such as

Robinson’ condition has been standard in classical nonlinear nonconvex optimization literature, for example

see the existing works [96–101]. Such condition also reduces to the well-known Mangasarian-Fromovitz

constraint qualification (MFCQ) and Slater conditions under appropriate problem settings [96].

Let us associate a new parameter ηi > 0 to ith component for all i = 1, 2, · · · , n and define the stepsize

β := 1∑n
i=1 ηi

. In the next lemma we prove that the gradient of primal problem converges to zero almost

surely under specific condition on ηi.
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Lemma 5. Suppose Assumptions A hold true, ηi is satisfied in 5ηi − 4Li −
√
L2
i + 32c

pi
> 0, where c :=

1
m

∑m
j=1(1 + 2m

pi
)L2

ij , and pi is the probability of picking i ∈ {1, 2, , · · · , n}. Let {zr} be the sequence

generated by Algorithm 4, we have

lim
r→∞

‖Φ(zr)‖ = 0 with probability 1 (5.11)

Lemma 5 gives us guarantees that primal problem can converge to stationary solution almost surely.

Further, we can show that the primal problem also achieves a sublinear rate of convergence.

Theorem 5. Suppose all the conditions in Lemma 5 are satisfied. Let the primal step runs for R iterations,

and u is a uniformly randomly number chosen from {1, 2, · · · , R}. Define Q as a potential function of∑
i fi(z) with formulation in (5.23). Then we have

E‖∇f(zu)‖2 ≤ 16m2

β

E[Q1 −QR+1]

R
. (5.12)

Finally, we are ready to present the overall convergence analysis. To this end, let us introduce the

termination condition for the inner loop:

S : ‖Φ(zr)‖ ≤ εr, εr → 0 as r →∞ (5.13)

This means that the inner loop is performed with increasing accuracy as the iteration continues. In practice

this is easy to achieve since as the algorithm proceeds, the problem will be close to some stationary solution

already, therefore it does not take long to reach small εr.
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Figure 5.2: Conditions on primal and dual updates ensure convergence to stationary solution.

Remark. We can see from the analysis that conditions imposed on primal and dual updates are the

key to ensure convergence of our algorithm, see Figure 5.2. As long as we can keep primal gradient and

constraint violation very small. We can achieve stationary solution with probability 1. With that, we give

our main convergence result in the following theorem.

Theorem 6. Let {zr,µr} be the sequence generated by Algorithm 4 for problem (5.5), where µr = {µri }

are the Lagrangian multipliers associated with the equality constraints. Assume termination condition

(5.13) is satisfied and suppose that z∗ is a limit point of {zr} and at the limit point z∗ Robinson’s con-

dition holds true. Then we have the following result:

lim
r→∞

‖Ψ(zr,µr)‖ = 0, with probability 1 (5.14)

Proof. Without loss of generality, we assume {zr} converges to z∗ with probability 1, otherwise we can

restrict to a convergent subsequence of {zr}. From Lemma 5 we have

lim
r→∞

‖Φ(zr)‖

= lim
r→∞

∥∥∥∥∥∑
i

(∇gi(zr) + µri∇hi(zr) + κi∇hi(zr)Thi(zr))

∥∥∥∥∥ = 0 with probability 1 (5.15)
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Define µ̂ri = µki + κihi(z
r), µ̂r = {µ̂ri }, then we have

lim
r→∞

‖∇g(zr) +∇h(zr)T (µ̂r)‖ = 0 with probability 1. (5.16)

Note that ‖Ψ(zr,µr)‖ ≤ ‖Φ(zr)‖ + ‖h(zr)‖, so in order to prove (5.14), we just need to show the dual

step gradient lim
r→∞

‖h(zr)‖ = 0 with probability 1.

We start by proving µ̂r is a bounded sequence. Assume to the contrary that µ̂r is unbounded, define

µ̄r = µ̂r

‖µ̂r‖ , then µ̄r is bounded. Therefore there exists a convergent subsequence {µ̄rk} with µ̄rk → µ̄ as

k → ∞. Since g(z) is continuously differentiable, then ∇g(z) is bounded. Divide both sides of (5.16) by

‖µ̂r‖ we have for sufficiently large k that ‖∇h(z∗)T (µ̄)‖ = 0 with probability 1. Also from Robinson’s

condition we know there exists some z and c > 0 such that −µ̄ = c∇h(z∗)(z − z∗). Combining together

implies that ‖µ̄‖ = 0 with probability 1, contradicting to the fact that ‖µ̄‖ = 1. Therefore {µ̂r} is bounded.

From the definition of µ̂r there are 2 possible cases corresponding to 2 scenarios in outer loop: 1) µ̂r−µr →

0 with κ bounded; 2) µ̂r and µr are both bounded with κ → ∞. Hence we must have ‖h(zr)‖ → 0 with

probability 1, together with (5.7) , (5.11) we complete the proof. �

5.5 Numerical Experiments

We conduct numerical experiments to demonstrate the efficiency of our algorithm, particularly in the

early stage of training. We implement the experiments on MNIST dataset [102] and the detailed settings are

as follows: 1) we use 784-784-784-10 fully connected feedforward neural network; 2) penalty parameters

are initialized as 0.001 and δr is set to be 0.9×previous constraint violation; 3) `(·) is set to be l2 loss. i.e.

1
2

∑
i ‖yL,i − di‖2; 4) activation is set to be hyperbolic tangent function (tanh); 5) DSPD is implemented

using Python 3.6.3 without optimizing the code on a CPU, while SGD-based methods are implemented

using Tensorflow training function with GPU support and the step size is optimized by hand to get the best

result.

In the first example we compare our proposed DSPD algorithm with SGD-based algorithms, vanilla

SGD, RMSProp, and Adam. Each time a minibatch of size 1000 data points is sampled. To make it a fair

comparison, one pass of all the data through primal updates of DSPD is counted as one iteration. We can

see from Figure 5.4, that DSPD is able to outperform SGD-based methods in the early stage.
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Figure 5.4: Comparison of training error and testing accuracy between DSPD and gradient-based methods
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Figure 5.5: For limited data, DSPD is able to extract more information than vanilla SGD.



www.manaraa.com

91

0 50 100 150 200 250 300 350 400
Iteration

20

40

60

80

Te
st
in
g 
Ac

cu
ra
cy

SGD with warmup

Pure SGD
SGD with DSPD warmup for 50 itr

Figure 5.6: Running DSPD for 50 iterations can give SGD accuracy boost, achieving 92% accuracy within
400 iterations.

In the second example, we focus on a small portion of MNIST dataset (1000 data points) and run DSPD

and several gradient-based methods in a batch way. We can see from Figure 5.5, that DSPD algorithm can

achieve a decent accuracy using limited data, better than SGD and RMSProp, slightly worse than Adam.

Recall that all the rest of the gradient-based methods (besides SGD) are using techniques such as momentum,

adaptive learning rate etc., while our algorithm is the basic version.

In light of the early advantage of DSPD, we continue implementation using DSPD as initialization for

SGD. This time we use a minibatch of 100 data points and the same neural network. From Figure 5.6 we can

see that, running 50 iterations DSPD can help boost SGD convergence speed dramatically. The is because

the decomposition of layers as well as having a loss function for each layer makes the algorithm able to see

gradients of each layer explicitly at early stage, hence more information is extracted using DSPD.

5.6 Proof of Lemma 5

First let us derive the primal update for general problem minz∈Rm f(z) =
∑n

i=1 fi(z). At each iteration

we randomly pick a data index and variable index. Now let us definem new intermediate variables yij ∈ Rm
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for each i as follows

yrij :=


zr (i, j) = (ir, jr);

yr−1
ij o.w.

(5.17)

Let us associate a new parameter ηi to ith component and define β := 1∑n
i=1 ηi

. The primal update is

presented as the following for all coordinates j = 1, 2, · · · ,m:

[zr+1]j =


[zr]j − β

(
n∑
i=1

∂fi(y
r−1
ij )

∂zj
+ 1

pir

(∂fir (zr)
∂zj

− ∂fir (yr−1
irj

)

∂zj

))
, j = jr

[zr]j , o.w.,

(5.18)

where pir is the probability of picking ir from {1, 2, · · · , n}. For further simplicity, let us define

vrirjr :=

n∑
i=1

∂fi(y
r−1
ijr

)

∂zjr
+

1

pir

(∂fir(zr)
∂zjr

−
∂fir(y

r−1
irjr

)

∂zjr

)
. (5.19)

Also, let us define vector er ∈ Rm as [er]jr = vrirjr and [er]j = 0 for j 6= jr. From here we have the

following compact update rule:

zr+1 = zr − βer. (5.20)

Taking expectation over ir and jr one can simply check that the following holds true

E[zr+1 − zr] = − β
m
∇f(zr). (5.21)

Further from this and utilizing the fact that E‖x − E[x]]2 ≤ E[x2] for a random variable x we obtain the

following:

E‖zr+1 − zr +
β

m
∇f(zr)‖2 ≤ E‖zr+1 − zr‖2. (5.22)

Define the filtration Fr as the σ-field generated by {it, jt}r−1
t=1 . Now let us define the following function:

Qr :=

n∑
i=1

[
fi(z

r) +
1

m

m∑
j=1

3

piηi

∥∥∥∥∂fi(yr−1
ij )

∂zj
− ∂fi(z

r)

∂zj

∥∥∥∥2]
. (5.23)

The potential function to measure the progress of the algorithm is defined as EFr [Qr].
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Step 1. In this step we show that the potential function is decreasing under particular parameter selections.

Let us define c := 1
m

∑m
j=1(1 + 2m

pi
)L2

ij , and pick parameter ηi large enough such that

ηi >
4Li +

√
L2
i + 32c

pi

5
. (5.24)

Then the following descent estimate holds true:

EFr [Qr −Qr−1 | Fr−1] ≤ −
∑n

i=1 ηi
8

Eir−1 [‖zr − zr−1‖2 | Fr−1]

−
n∑
i=1

1

2ηi

m∑
j=1

∥∥∥∥∂fi(zr−1)

∂zj
−
∂fi(y

r−2
ij )

∂zj

∥∥∥∥2

. (5.25)

To show (5.25) using the definition of potential function Qr, we have:

EFr [Qr −Qr−1 | Fr−1] = EFr
[

n∑
i=1

(
fi(z

r)− fi(zr−1)
)
| Fr−1

]

+ EFr

 n∑
i=1

1

m

m∑
j=1

3

piηi

(∥∥∥∥∥∂fi(y
r−1
ij )

∂zj
− ∂fi(z

r)

∂zj

∥∥∥∥∥
2

−

∥∥∥∥∥∂fi(y
r−2
ij )

∂zj
− ∂fi(z

r−1)

∂zj

∥∥∥∥∥
2)
| Fr−1

 . (5.26)

The first term in (5.26) can be bounded as follows

EFr
[

n∑
i=1

(
fi(z

r)− fi(zr−1)
)
| Fr−1

]
(i)

≤ EFr
[ n∑
i=1

〈∂fi(z
r−1)

∂zjr−1

, [zr]jr−1 − [zr−1]jr−1〉+

∑n
i=1 Li
2

‖[zr]jr−1 − [zr−1]jr−1‖2 | Fr−1

]

= EFr
[〈

n∑
i=1

∂fi(z
r−1)

∂zjr−1

+
1

β
([zr]jr−1 − [zr−1]jr−1), [zr]jr−1 − [zr−1]jr−1

〉
| Fr−1

]

−
(

1

β
−
∑n

i=1 Li
2

)
EFr

[
‖[zr]jr−1 − [zr−1]jr−1‖2 | Fr−1

]
(5.20)
= EFr

[〈 n∑
i=1

∂fi(z
r−1)

∂zjr−1

− vr−1
ir−1jr−1

, [zr]jr−1 − [zr−1]jr−1

〉
| Fr−1

]
−
(

1

β
−
∑n

i=1 Li
2

)
EFr

[
‖[zr]jr−1 − [zr−1]jr−1‖2 | Fr−1

]
(ii)

≤ 1

2`1
EFr

∥∥∥∥∥
n∑
i=1

∂fi(z
r−1)

∂zjr−1

− vr−1
ir−1jr−1

∥∥∥∥∥
2

| Fr−1

+
`1
2
EFr

[
‖[zr]jr−1 − [zr−1]jr−1‖2 | Fr−1

]
−
(

1

β
−
∑n

i=1 Li
2

)
EFr

[
‖[zr]jr−1 − [zr−1]jr−1‖2 | Fr−1

]
(5.27)
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where in (i) we have used the Lipschitz continuity of the gradients of fi’s together with the fact that [zr]j −

[zr−1]j = 0 when j 6= jr−1. In (ii) we have applied the Young’s inequality for some `1 > 0.

Choosing `1 = 1
2β , overall we have the following bound for the first term in (5.26):

E

[
n∑
i=1

(
fi(z

r)− fi(zr−1)
)
| Fr−1

]
(5.28)

≤
n∑
i=1

β

pi

∥∥∥∥∥∂fi(zr−1)

∂zjr−1

−
∂fi(y

r−2
ijr−1

)

∂zjr−1

∥∥∥∥∥
2

−
(

3

4β
−
∑n

i=1 Li
2

)
EFr

[
‖[zr]jr−1 − [zr−1]jr−1‖2 | Fr−1

]
≤

n∑
i=1

β

pi

∥∥∥∥∥∂fi(zr−1)

∂zjr−1

−
∂fi(y

r−2
ijr−1

)

∂zjr−1

∥∥∥∥∥
2

−
(

3

4β
−
∑n

i=1 Li
2

)
EFr

[
1

m
‖zr − zr−1‖2 | Fr−1

]
We bound the second term in (5.26) in the following way:

EFr

∥∥∥∥∥∂fi(y
r−1
ij )

∂zj
− ∂fi(z

r)

∂zj

∥∥∥∥∥
2

| Fr−1


= EFr

∥∥∥∥∥∂fi(y
r−1
ij )

∂zj
− ∂fi(z

r)

∂zj
+
∂fi(z

r−1)

∂zj
− ∂fi(z

r−1)

∂zj

∥∥∥∥∥
2

| Fr−1


(i)

≤ (1 + ξij)EFr
[∥∥∥∥∂fi(zr)∂zj

− ∂fi(z
r−1)

∂zj

∥∥∥∥2

| Fr−1

]

+

(
1 +

1

ξij

)
EFr

[∥∥∥∥∂fi(yr−1
ij )

∂zj
− ∂fi(z

r−1)

∂zj

∥∥∥∥2

| Fr−1

]
(ii)
= (1 + ξij)L

2
ijEFr

[
‖[zr]jr−1 − [zr−1]jr−1‖2 | Fr−1

]
+ (1− pi

m
)

(
1 +

1

ξij

)∥∥∥∥∂fi(yr−2
ij )

∂zj
− ∂fi(z

r−1)

∂zj

∥∥∥∥2

(5.29)

where in (i) we use Young’s inequity for constant ξij > 0. The equality (ii) is true because the randomness

of yr−1
ij comes from ir−1,and jr−1. Also, ir and jr are independent random variables so for each i and j

there is a probability pi. 1
m such that jth block of zi is updated. Therefore, we have

∂fi(y
r−1
ij )

∂zj
=


∂fi(z

r−1)
∂zj

, with probability pi. 1
m

∂fi(y
r−2
ij )

∂zj
, with probability 1− pi. 1

m

(5.30)
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Applying (5.29), the second part of (5.26) can be bounded as

EFr

 n∑
i=1

1

m

m∑
j=1

3

piηi

(∥∥∥∥∥∂fi(y
r−1
ij )

∂zj
− ∂fi(z

r)

∂zj

∥∥∥∥∥
2

−

∥∥∥∥∥∂fi(y
r−2
ij )

∂zj
− ∂fi(z

r−1)

∂zj

∥∥∥∥∥
2)
| Fr−1


≤

n∑
i=1

3

piηi

1

m

m∑
j=1

(1 + ξij)L
2
ijEFr

[
‖zr − zr−1‖2 | Fr−1

]

+
n∑
i=1

3

piηi

 m∑
j=1

(1− pi
m

)(1 +
1

ξij
)− 1

∥∥∥∥∥∂fi(y
r−2
ij )

∂zj
− ∂fi(z

r−1)

∂zj

∥∥∥∥∥
2

. (5.31)

Combining (5.28) and (5.31) eventually we have

E[Qr −Qr−1 | Fr]

≤
n∑
i=1

 β

pi
+

3

piηi

 m∑
j=1

(1− pi
m

)(1 +
1

ξij
)− 1


∥∥∥∥∥∂fi(y

r−2
ij )

∂zj
− ∂fi(z

r−1)

∂zj

∥∥∥∥∥
2

+

− 3

4β
+

∑n
i=1 Li
2

+

n∑
i=1

3

piηi

1

m

m∑
j=1

(1 + ξij)L
2
ij

EFr
[
‖zr − zr−1‖2 | Fr−1

]
. (5.32)

Let us define {c̃i} and ĉ as the following:

c̃i =
β

pi
+

3

piηi

 m∑
j=1

(1− pi
m

)(1 +
1

ξij
)− 1


ĉ = − 3

4β
+

∑n
i=1 Li
2

+
n∑
i=1

3

piηi

1

m

m∑
j=1

(1 + ξij)L
2
ij .

In order to prove the lemma it is enough to show that c̃i < − 1
2ηi
∀ i, and ĉ < −

∑n
i=1

ηi
8 . Let us pick

ξij =
2m

pi
, pi =

ηi∑n
i=1 ηi

. (5.33)

Recall that β = 1∑n
i=1 ηi

. These values yield the following:

c̃i =
1

ηi
− 3

ηi

(
1

2
+
pi
m

)
≤ − 1

2ηi
.

Next we show ĉ ≤ −
∑n

i=1
ηi
8 . Setting c := 1

m

∑m
j=1(1 + ξij)L

2
ij , it is sufficient to pick ηi such that

ηi >
4Li +

√
L2
i + 32c

pi

5
. (5.34)
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Step 2. First, using the fact that f(z) is lower bounded [cf. Assumption A3], it is easy to check that

{Qr} is a bounded sequence. Let us denote its lower bound by Q. From equation (5.32), we conclude that

{Qr − Q} is a nonnegative supermartingale. Therefore, we can apply the Supermartingale Convergence

Theorem proposed in [103, Proposition 4.2] and consequently we conclude that {Qr} converges w.p.1, and

that

EFr
[
‖zr − zr−1‖2 | Fr−1

]
→ 0, and

∥∥∥∥∂fi(zr−1)

∂xj
−
∂fi(y

r−2
ij )

∂xj

∥∥∥∥2

→ 0, ∀ i, j. (5.35)

Using the definition of expectation we have that

EFr‖zr − zr−1‖2 = EFr−1

[
EFr

[
‖zr − zr−1‖2 | Fr−1

]]
. (5.36)

From the first expression of (5.35) together with equation (5.36) we conclude that

E‖zr − zr−1‖2 = EFr‖zr − zr−1‖2 → 0 w.p.1 (5.37)

Combining this equation with (5.21) we conclude that ‖∇f(zr)‖ → 0 w.p.1. This completes the proof.

5.6.1 Proof of Theorem 5

We show that the stationarity gap vanishes in a sublinear manner as the algorithm proceeds. For this gap

we have the following:

E‖∇f(zr)‖2 =
m2

β2
E
∥∥∥∥−βm ∇f(zr)

∥∥∥∥2

=
m2

β2
E
∥∥∥∥−βm ∇f(zr)− (zr+1 − zr) + (zr+1 − zr)

∥∥∥∥2

≤ m2

β2
E
∥∥∥∥−βm ∇f(zr)− (zr+1 − zr)

∥∥∥∥2

+
m2

β2
E‖zr+1 − zr‖2

(5.22)
≤ 2m2

β2
E‖zr+1 − zr‖2. (5.38)

From the above equation one can conclude that

E‖∇f(zr)‖2 ≤ 2m2

β2
E‖zr+1 − zr‖2 +

8m2

β

n∑
i=1

1

ηi

m∑
j=1

∥∥∥∥∂fi(zr−1)

∂zj
−
∂fi(y

r−2
ij )

∂zj

∥∥∥∥2

. (5.39)
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Further, from equation (5.25) we have

16m2E[Qr −Qr+1]

β
≥ 2m2

β2
E‖zr − zr−1‖2 +

8m2

β

n∑
i=1

1

ηi

m∑
j=1

∥∥∥∥∂fi(zr−1)

∂zj
−
∂fi(y

r−2
ij )

∂zj

∥∥∥∥2

. (5.40)

Combining two equations (5.39) and (5.40) we reach the following relation:

E‖∇f(zr)‖2 ≤ 16m2

β
E[Qr −Qr+1]. (5.41)

Taking sum over both sides for r = 1, · · · , R, (R is the total number of primal iterations) we obtain:

R∑
r=1

E‖∇f(zr)‖2 ≤ 16m2

β
E[Q1 −QR+1].

Now instead of taking the zR, we pick a random number u uniformly from {1, 2, · · · , R} uniformly, and

consider zu as the primal solution. Using the definition of zu, we have

E‖∇f(zu)‖2 = EFr
[
Eu[‖∇f(zr)‖2 | Fr]

]
=

1

R

R∑
r=1

EFr‖∇f(zr)‖2.

Therefore, we can finally conclude that:

E‖∇f(zu)‖2 ≤ 16m2

β

E[Q1 −QR+1]

R
. (5.42)

The proof is complete.

5.7 Conclusion

In this chapter we propose a double stochastic primal-dual training framework. Using auxiliary variables

we decouple the connections between layers and formulate an equality constrained optimization problem.

We have shown that the proposed algorithm is able to compute stationary solution almost surely. Moreover,

we demonstrate with simulation that our algorithm is able to train neural networks without using backpropa-

gation. An early advantage over SGD is observed, based on which we further develop a warm-up strategy to

boost SGD convergence speed by first running a few iterations of DSPD. The simulation result demonstrates

the efficacy of such strategy.
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CHAPTER 6. GENERAL CONCLUSION

In this dissertation, we present two lines of time-varying optimization framework. First line of work can

be characterized as real-time optimization, where problem parameters are changing in real time. We propose

dynamic algorithms based on alternating direction method of multipliers (ADMM). In the case where first

order information is available, we design a perturbed ADMM algorithm that allows us to balance between

convergence speed and solution accuracy. In the case where only objective function values are available, we

design a zeroth order ADMM algorithm to solve the time-varying problem with just two-point estimation

of original gradient. Both cases are proved to have the tracking ability. Specifically, we prove that our

algorithms are able to converge to a neighbourhood of the optimal solution for each time instance. The

neighbourhood radius is quantified as a function of optimal drift and changes in problem parameters. We

apply our algorithms to power flow control problem and utilize real world data to demonstrate the efficacy of

proposed algorithms. The real time setting can further be extended to the cases where static optimization has

random error in updates. This is, again, applied to the power system problem, where a feedback controller

for inverter-interfaced renewable energy sources (RESs) systems that drives the outputs of RESs to the

optimal solution of convex surrogates of the AC OPF problem is developed.

The second line of work can be characterized as stochastic optimization where we aim at finding one

solution that is close to all optimal solutions for each time instance (or each data point). Specifically,

we consider the problem of training a feed-forward neural network. We apply the idea of splitting layers

by adding auxiliary variables and construct an equality constrained optimization problem. Each time we

randomly sample a mini-batch of the full dataset and utilize a double stochastic primal-dual decomposition

algorithm to solve this problem. To the best of our knowledge, this is the first stochastic version primal dual

training method. Convergence to stationary solution is established by designing specific stopping criteria

for primal, dual updates and assuming Robinson’s constraint qualification. Simulation results show that our
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proposed algorithm is able to fully explore hidden layer information and network structure, which in return

gives an early advantage over vanilla SGD.

In the future, we want to further improve our time-varying framework in following directions:

Tracking task

• Explore more applications that can benefit from our real-time optimization work.

• Focus on theories of real-time nonconvex optimization problems.

Training task

• Incorporate various acceleration techniques to improve DSPD convergence speed.

• Explore systematic ways to reduce computation complexity of DSPD.
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[25] T. Rögnvaldsson, “On langevin updating in multilayer perceptrons,” Neural Computation, vol. 6,
no. 5, pp. 916–926, 1994.

[26] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, p. 436, 2015.

[27] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop,” in Neural Networks: Tricks
of the Trade. Springer, 1998, pp. 9–50.

[28] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,”
in Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics,
2010, pp. 249–256.

[29] A. M. Saxe, J. L. McClelland, and S. Ganguli, “Exact solutions to the nonlinear dynamics of learning
in deep linear neural networks,” arXiv preprint arXiv:1312.6120, 2013.

[30] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing in-
ternal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.



www.manaraa.com

102

[32] M. Carreira-Perpinan and W. Wang, “Distributed optimization of deeply nested systems,” in Artificial
Intelligence and Statistics, 2014, pp. 10–19.

[33] G. Taylor, R. Burmeister, Z. Xu, B. Singh, A. Patel, and T. Goldstein, “Training neural networks
without gradients: A scalable admm approach,” in International Conference on Machine Learning,
2016, pp. 2722–2731.

[34] Z. Zhang, Y. Chen, and V. Saligrama, “Efficient training of very deep neural networks for supervised
hashing,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 1487–1495.

[35] Z. Zhang and M. Brand, “Convergent block coordinate descent for training tikhonov regularized deep
neural networks,” in Advances in Neural Information Processing Systems, 2017, pp. 1719–1728.

[36] Q. Ling and A. Ribeiro, “Decentralized dynamic optimization through the alternating direction
method of multipliers.” IEEE Transactions on Signal Processing, vol. 62, no. 5, pp. 1185–1197,
2014.

[37] X. Cao and K. Liu, “Dynamic sharing through the admm,” arXiv preprint arXiv:1702.03874, 2017.

[38] Y. Zhang, E. Dall’Anese, and M. Hong, “Dynamic admm for real-time optimal power flow,” in Signal
and Information Processing (GlobalSIP), 2017 IEEE Global Conference on. IEEE, 2017, pp. 1085–
1089.

[39] D. Hajinezhad and M. Hong, “Perturbed proximal primal dual algorithm for nonconvex nonsmooth
optimization.”
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